Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists find microbes in lava tube living in conditions like those on Mars

The journal article this release is based on is available at:

A team of scientists from Oregon has collected microbes from ice within a lava tube in the Cascade Mountains and found that they thrive in cold, Mars-like conditions.

The microbes tolerate temperatures near freezing and low levels of oxygen, and they can grow in the absence of organic food. Under these conditions their metabolism is driven by the oxidation of iron from olivine, a common volcanic mineral found in the rocks of the lava tube. These factors make the microbes capable of living in the subsurface of Mars and other planetary bodies, the scientists say.

The findings, supported by a grant from the National Aeronautics and Space Administration (NASA), are detailed in the journal Astrobiology.

“This microbe is from one of the most common genera of bacteria on Earth,” said Amy Smith, a doctoral student at Oregon State University and one of the authors of the study. “You can find its cousins in caves, on your skin, at the bottom of the ocean and just about anywhere. What is different, in this case, is its unique qualities that allow it to grow in Mars-like conditions.”

In a laboratory setting at room temperature and with normal oxygen levels, the scientists demonstrated that the microbes can consume organic material (sugar). But when the researchers removed the organic material, reduced the temperature to near-freezing, and lowered the oxygen levels, the microbes began to use the iron within olivine – a common silicate material found in volcanic rocks on Earth and on Mars – as its energy source.

“This reaction involving a common mineral from volcanic rocks just hasn’t been documented before,” said Martin Fisk, a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences and an author on the study. “In volcanic rocks directly exposed to air and at warmer temperatures, the oxygen in the atmosphere oxidizes the iron before the microbes can use it. But in the lava tube, where the bacteria are covered in ice and thus sheltered from the atmosphere, they out-compete the oxygen for the iron.

“By mimicking those conditions, we got the microbes to repeat that behavior in the laboratory,” Fisk added.

The microbes were collected from a lava tube near Newberry Crater in Oregon’s Cascades Mountains, at an elevation of about 5,000 feet. They were within the ice on rocks some 100 feet inside the lava tube, in a low-oxygen, near-freezing environment. Scientists, including Fisk, have said that the subsurface of Mars could have similar conditions and harbor bacteria.

In fact, Fisk has examined a meteorite originating from Mars that contained tracks – which could indicate consumption by microbes – though no living material was discovered. Similar tracks were found on the rocks from the Newberry Crater lava tube, he said.

“Conditions in the lava tube are not as harsh as on Mars,” Fisk said. “On Mars, temperatures rarely get to the freezing point, oxygen levels are lower and at the surface, liquid water is not present. But water is hypothesized to be present in the warmer subsurface of Mars. Although this study does not exactly duplicate what you would find on Mars, it does show that bacteria can live in similar conditions.

“We know from direct examination, as well as satellite imagery, that olivine is in Martian rocks,” Fisk added. “And now we know that olivine can sustain microbial life.”

The idea for exploring the lava tube came from Radu Popa, an assistant professor at Portland State University and lead author on the paper. Popa used to explore caves in his native Romania and was familiar with the environmental conditions. Because lava tubes are a sheltered environment and exist on both Earth and Mars, Popa proposed the idea of studying microbes from them to see if life may exist – or could have existed – on the Red Planet.

“When temperatures and atmospheric pressure on Mars are higher, as they have been in the past, ecosystems based on this type of bacteria could flourish,” Popa said. “The fingerprints left by such bacteria on mineral surfaces can be used by scientists as tools to analyze whether life ever existed on Mars.”

About the OSU College of Oceanic and Atmospheric Sciences: COAS is internationally recognized for its faculty, research and facilities, including state-of-the-art computing infrastructure to support real-time ocean/atmosphere observation and prediction. The college is a leader in the study of the Earth as an integrated system, providing scientific understanding to address complex environmental challenges

Marty Fisk | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>