Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find out why living things are the size they are -- and none other

09.04.2010
New research in the FASEB Journal suggests that 'growth genes' are not driven by age, but by the process of growth itself, opening doors for organ regeneration as well as new treatments for abnormal body growth and cancer

If you consider yourself to be too short or too tall, things are looking up, or down, depending on your vertical disposition. New research published online in The FASEB Journal (http://www.fasebj.org) explains how we grow, how our bodies maintain correct proportions, and offers insight into what goes wrong with growth disorders and unregulated cell growth in cancer.

"We hope that these insights into the mechanisms controlling body growth will help us understand better the reasons for the excessive growth of cancer cells and also provide new approaches to turn growth back on in normal cells in order to regenerate damaged organs," said Julian C. Lui, Ph.D., a researcher involved in the work from the Eunice Kennedy Shriver National Institute of Child Health and Human Development at the National Institutes of Health in Bethesda, Maryland.

Scientists studied which genes were active in young animals (growing rapidly) and compared them to the same genes in older animals (growing slowly). Then they identified which genes were "turned off" simultaneously in multiple organs with age. To understand the consequences of these genes being turned off, the researchers experimentally turned them off in cultured cells and observed the effects. They found that rapid growth in early life is a response to the activation of multiple genes that stimulate growth. These same genes are progressively turned off during the maturation process, causing growth to slow. This process occurs simultaneously in multiple organs, which explains why organs all stay in proportional size as the body grows. This process is not controlled by age. Instead, genes are turned off when organs achieve a certain level of growth.

"This important work answers the question of why any animal– including us – has a certain size," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal, "As this study shows, growth is dictated by organ development, and no one wishes their organs to be abnormally large or small."

Receive monthly highlights from The FASEB Journal by e-mail. Sign up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal (http://www.fasebj.org) is published by the Federation of the American Societies for Experimental Biology (FASEB). The journal has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century and is the most cited biology journal worldwide according to the Institute for Scientific Information.

FASEB comprises 23 societies with more than 90,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB enhances the ability of scientists and engineers to improve—through their research—the health, well-being and productivity of all people. FASEB's mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Julian C. Lui, Patricia Forcinito, Maria Chang, Weiping Chen, Kevin M. Barnes, and Jeffrey Baron. Coordinated postnatal down-regulation of multiple growth-promoting genes: evidence for a genetic program limiting organ growth. FASEB J. doi:10.1096/fj.09-152835 ; http://www.fasebj.org/cgi/content/abstract/fj.09-152835v1

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

Asian tiger mosquito on the move

22.05.2018 | Life Sciences

Self-illuminating pixels for a new display generation

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>