Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find Key Pathway Implicated in Progression of Childhood Cancer

14.09.2010
New Finding May Pave the Way to the Development of Drugs for Treating the Disease

According to a new study a protein crucial for the immune response appears to be a key player in the progression of a devastating form of childhood leukemia called T-cell acute lymphoblastic leukemia (T-ALL). Suppressing the activity of the protein kills the leukemic cells, the study shows, opening a potential avenue to new drugs that could prevent progression of the disease.

Led by Iannis Aifantis, PhD, associate professor of pathology and director of the Cancer Stem Cell Program at the NYU Cancer Institute at NYU Langone Medical Center, and colleagues at the Institute Municipal d’Investigacions Mediques in Barcelona, Spain, the new study appears in the September 14, 2010, issue of Cancer Cell. These molecular detectives discovered the protein by picking up on a bit of cross-talk, or conversation, between two unrelated genes.

“We are very excited about this discovery because small molecule drugs that block this protein are already in development,” said Aifantis, who is also a Howard Hughes Medical Institute Early Career Scientist. “We plan to continue to study these inhibitors in the laboratory with the aim of evaluating the feasibility of testing such drugs in patients.

Despite great strides in treating childhood leukemia, T-ALL, poses special challenges because of the high risk of leukemic cells invading the brain and spinal cord of children who relapse. T-ALL, a blood-borne cancer in which the bone marrow makes too many lymphocytes, or white blood cells, strikes several hundred children and adolescents in the U.S. annually. While more than 90 percent initially go into remission through a combination of chemotherapy and radiation, up to one third of this group eventually relapse.

Previous research had strongly implicated a well-known oncogene, or cancer-causing gene, called Notch1 in the initiation and progression of T-ALL in patients. Certain kinds of mutations in this gene have been found in nearly half of T-ALL patients and current estimates suggest that the gene’s regulatory influence might be implicated in nearly 90 percent of cases.

In the new study, the researchers found that Notch targeted a protein called NF-kB (short for nuclear factor kB), an important transcription factor that regulates genes involved in cell division and the immune response. Transcription factors bind to the DNA of genes, thereby activating them. Previous studies had suggested that cross talk between Notch and NF-kB occurred, but the new study reveals the molecular characters involved in the cross talk, and shows that blocking NF-kB eliminated leukemic cells carrying activating Notch mutations.

The researchers then found that the way that Notch1 can induce NF-kB signaling is by suppressing the expression of an enzyme called CYLD, a negative regulator of the NF-kB pathway. In other words, the enzyme normally shuts down the pathway of genes regulated by NF-kB.

“Presently, drugs that inhibit NF-kB are already in development and some of them are being tested in humans for inflammatory diseases,” said Dr. Aifantis, “If used for patients with T-ALL leukemia, such drugs could be used alone or in combination with more established protocols like chemotherapy and radiation.”

Co-authors of the study include Luis Espinosa and Anna Bigas of the Institute Municipal d’Investigacions Mediques in Barcelona Spain, as well as Severine Cathelin, Thomas Trimarchi and Alexander Statnikov of NYU Langone Medical Center.

The study was supported by grants from the National Institutes of Health in Bethesda, Maryland, The Howard Hughes Medical Institute in Chevy Chase, Maryland and the American Cancer Society.

About NYU Langone Medical Center
NYU Langone Medical Center is one of the nation's premier centers of excellence in healthcare, biomedical research, and medical education. For over 170 years, NYU physicians and researchers have made countless contributions to the practice and science of health care. Today the Medical Center consists of NYU School of Medicine, including the Smilow Research Center, the Skirball Institute of Biomolecular Medicine, and the Sackler Institute of Graduate Biomedical Sciences; and the NYU Hospitals Center, including Tisch Hospital, a 705-bed acute-care general hospital, Rusk Institute of Rehabilitation Medicine, the first and largest facility of its kind, and NYU Hospital for Joint Diseases, a leader in musculoskeletal care, a Clinical Cancer Center and numerous ambulatory sites.

Dorie Klissas | Newswise Science News
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>