Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find new way to induce programmed cell death that could lead to potential cancer therapies

13.07.2012
Researchers from the Hebrew University of Jerusalem and the Weizmann Institute of Science have developed a technique to cause apoptosis, or programmed cell death, that could lead to new approaches to treating cancer.

Apoptosis is an essential defense mechanism against the spread of abnormal cells such as cancer. It is a complex process that occurs through networks of proteins that interact with each other. Cancer cells usually avoid this process due to mutations in the genes that encode the relevant proteins. The result is that the cancer cells survive and take over while healthy cells die.

The research, by graduate student Chen Hener-Katz at the Hebrew University, involved collaboration between Prof. Assaf Friedler of the Hebrew University's Institute of Chemistry and Prof. Atan Gross of the Weizmann Institute's Department of Biological Regulation. It was published in the Journal of Biological Chemistry under the title "Molecular Basis of the Interaction between Proapoptotic Truncated BID (tBID) Protein and Mitochondrial Carrier Homologue 2 (MTCH2) Protein."

The study examined the interaction between two important proteins involved in cell death: mitochondrial carrier homologue 2 (MTCH2), which was discovered in the lab of Prof. Gross, and truncated BID (tBID), which are both involved in the apoptotic process. The researchers found the regions in the two proteins that are responsible for binding to each other, a critical step in initiating apoptosis. Following their discovery, the researchers developed short synthetic protein fragments, or peptides, that mimicked the areas on the proteins that bind to each other, and by doing so inhibited this binding. In lab experiments conducted on cell cultures, this resulted in the death of cancer cells of human origin.

"These protein segments could be the basis of future anti-cancer therapies in cases where the mechanism of natural cell death is not working properly," said Prof. Friedler. "We have just begun to uncover the hidden potential in the interaction between these proteins. This is an important potential target for the development of anticancer drugs that will stimulate apoptosis by interfering with its regulation. "

Prof. Friedler is the head of the school of chemistry at the Hebrew University. His major research interests are using peptides to study protein-protein interactions in health and disease, and developing peptides as drug leads that modulate these interactions, specifically in relation to HIV and cancer. Prof. Friedler won the prestigious starting grant from the ERC (European Research Council) as well as the outstanding young scientist prize by the Israeli Chemical Society. His research was supported by a grant from the Israel Ministry of Health and by a starting grant from the European Research Council.

For more information:

Dov Smith, Hebrew University Foreign Press Liaison
02-5881641 / 054-8820860 (+972-54-8820860)
dovs@savion.huji.ac.il
Orit Sulitzeanu, Hebrew University Spokesperson
02-5882910 / 054-8820016
orits@savion.huji.ac.il

Orit Sulitzeanu | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>