Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find new genetic path to deadly diarrheal disease

12.06.2012
Scientists have found new genetic information that shows how harmful bacteria cause the acute diarrheal disease shigellosis, which kills more than a million people worldwide each year.

The research, which could lead to the development of future treatments, was published today in the journal PLoS ONE. The study was led by Ohio University scientist Erin Murphy and doctoral student William Broach, with contributions from University of Nevada, Las Vegas and University of Texas at Austin researchers.


Bright spots among intestinal cells show where the shigella bacteria were able to replicate, indicating their ability to cause disease. Credit: Erin Murphy/Ohio University

When the disease-causing bacterium Shigella invades a human host, environmental conditions there, such as changes in temperature or pH, stimulate a genetic expression pathway within the bacterium that allows it to survive and cause disease. Central to this genetic pathway are two proteins, VirF and VirB. VirF functions to increase production of VirB which, in turn, promotes the production of factors that increases the bacterium's virulence, or ability to cause illness in its host.

"It's like a domino effect," said Murphy, assistant professor of bacteriology in the Ohio University Heritage College of Osteopathic Medicine.

Murphy and Broach's new study, however, suggests that production of VirB can be controlled independently of VirF. It also shows that the VirF-independent regulation is mediated by a specific small RNA, a special type of molecule whose job is to control the production of particular targets. This is the first study to demonstrate that transcription of virB is regulated by any factor other than VirF, Murphy explained.

The research not only reveals the intricate level of gene expression the bacteria employ to survive in the human body, but potentially could lead to new treatments. Currently, antibiotics are prescribed to patients with the disease.

"These findings are feeding into the basic understanding of this gene expression so that future researchers can work to disrupt it," Broach said. "The more we know about it, the more targets we have to disrupt it and to possibly develop targeted antibiotic treatments."

For those living in developing countries, where access to clean drinking water can be scarce, an improved medical treatment for shigellosis could mean the difference between life and death.

"In the United States, if we get severe diarrhea we can go to the store and get Gatorade," Murphy said. "But if you're already starving to begin with because you don't have access to good food and clean water, then you get shigellosis on top of that—and you don't have good water to rehydrate yourself—that's when the deaths happen."

The disease, which is transmitted person to person or through contaminated food or water sources, has an infectious dose of just 10 organisms, meaning as few as 10 organisms can cause disease in a healthy person. This infectious dose is exceedingly low compared to other bacteria that require tens of thousands of organisms to cause disease.

While it is often thought to be a third-world problem, shigellosis causes a reported 14,000 cases in the United States each year. The Centers for Disease Control suggests that the actual number may be 20 times higher, as mild cases often aren't reported or diagnosed.

"In the United States it's probably even more underreported than in developing countries because of access to healthy, clean drinking water," Murphy said. "If you're a healthy individual and you've got access to clean drinking water, chances are you're going to get severe diarrhea, but you're not going to die."

The research was funded by the National Institutes of Health, the Ohio University Research Committee and the Ohio University Heritage College of Osteopathic Medicine.

The collaborators on the PLoS ONE paper are University of Nevada, Las Vegas scientists Nicholas Egan and Helen Wing and University of Texas at Austin researcher Shelley Payne.

The PLoS ONE paper can be accessed online: http://dx.plos.org/10.1371/journal.pone.0038592

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>