Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find genetic mechanism linking aging to specific diets

28.01.2014
The genetics of personalized dieting: Some day soon, genetic testing could identify what diet each individual should consume for a longer, healthier life

Your best friend swears by the Paleo Diet. Your boss loves Atkins. Your sister is gluten-free, and your roommate is an acolyte of Michael Pollan. So who's right? Maybe they all are.

In new research published this month in Cell Metabolism, USC scientists Sean Curran and Shanshan Pang identify a collection of genes that allow an organism to adapt to different diets and show that without them, even minor tweaks to diet can cause premature aging and death.

Finding a genetic basis for an organism's dietary needs suggests that different individuals may be genetically predisposed to thrive on different diets – and that now, in the age of commercial gene sequencing, people might be able to identify which diet would work best for them through a simple blood test.

"These studies have revealed that single gene mutations can alter the ability of an organism to utilize a specific diet. In humans, small differences in a person's genetic makeup that change how well these genes function, could explain why certain diets work for some but not others," said Curran, corresponding author of the study and assistant professor with joint appointments in the USC Davis School of Gerontology, the USC Dornsife College of Letters, Arts and Sciences, and the Keck School of Medicine of USC.

Curran and Pang studied Caenorhabditis elegans, a one-milimeter-long worm that scientists have used as a model organism since the '70s. Decades of tests have shown that genes in C. elegans are likely to be mirrored in humans while its short lifespan allows scientists to do aging studies on it.

In this study, Curran and Pang identified a gene called alh-6, which delayed the effects of aging depending on what type of diet the worm was fed by protecting it against diet-induced mitochondrial defects.

"This gene is remarkably well-conserved from single celled yeast all the way up to mammals, which suggests that what we have learned in the worm could translate to a better understanding of the factors that alter diet success in humans," Curran said.

Future work will focus on identifying what contributes to dietary success or failure, and whether these factors explain why specific diets don't work for everyone. This could be the start of personalized dieting based on an individual's genetic makeup, according to Curran.

"We hope to uncover ways to enhance the use of any dietary program and perhaps even figure out ways of overriding the system(s) that prevent the use of one diet in certain individuals," he said.

This research was funded by the National Institutes of Health (grant AG032308), the Ellison Medical Foundation, and the American Federation of Aging Research.

Robert Perkins | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>