Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find genetic mechanism linking aging to specific diets

28.01.2014
The genetics of personalized dieting: Some day soon, genetic testing could identify what diet each individual should consume for a longer, healthier life

Your best friend swears by the Paleo Diet. Your boss loves Atkins. Your sister is gluten-free, and your roommate is an acolyte of Michael Pollan. So who's right? Maybe they all are.

In new research published this month in Cell Metabolism, USC scientists Sean Curran and Shanshan Pang identify a collection of genes that allow an organism to adapt to different diets and show that without them, even minor tweaks to diet can cause premature aging and death.

Finding a genetic basis for an organism's dietary needs suggests that different individuals may be genetically predisposed to thrive on different diets – and that now, in the age of commercial gene sequencing, people might be able to identify which diet would work best for them through a simple blood test.

"These studies have revealed that single gene mutations can alter the ability of an organism to utilize a specific diet. In humans, small differences in a person's genetic makeup that change how well these genes function, could explain why certain diets work for some but not others," said Curran, corresponding author of the study and assistant professor with joint appointments in the USC Davis School of Gerontology, the USC Dornsife College of Letters, Arts and Sciences, and the Keck School of Medicine of USC.

Curran and Pang studied Caenorhabditis elegans, a one-milimeter-long worm that scientists have used as a model organism since the '70s. Decades of tests have shown that genes in C. elegans are likely to be mirrored in humans while its short lifespan allows scientists to do aging studies on it.

In this study, Curran and Pang identified a gene called alh-6, which delayed the effects of aging depending on what type of diet the worm was fed by protecting it against diet-induced mitochondrial defects.

"This gene is remarkably well-conserved from single celled yeast all the way up to mammals, which suggests that what we have learned in the worm could translate to a better understanding of the factors that alter diet success in humans," Curran said.

Future work will focus on identifying what contributes to dietary success or failure, and whether these factors explain why specific diets don't work for everyone. This could be the start of personalized dieting based on an individual's genetic makeup, according to Curran.

"We hope to uncover ways to enhance the use of any dietary program and perhaps even figure out ways of overriding the system(s) that prevent the use of one diet in certain individuals," he said.

This research was funded by the National Institutes of Health (grant AG032308), the Ellison Medical Foundation, and the American Federation of Aging Research.

Robert Perkins | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>