Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find Gene that Ties Stress to Obesity and Diabetes

22.04.2010
The constant stress that many are exposed to in our modern society may be taking a heavy toll: Anxiety disorders and depression, as well as metabolic (substance exchange) disorders, including obesity, type 2 diabetes, and arteriosclerosis, have all been linked to stress.

These problems are reaching epidemic proportions: Diabetes alone is expected to affect some 360 million people worldwide by the year 2030. While anyone who has ever gorged on chocolate before an important exam recognizes the tie between stress, changes in appetite, and anxiety-related behavior, the connection has lately been borne out by science, although the exact reasons for the connection aren’t crystal clear.

Dr. Alon Chen of the Weizmann Institute’s Department of Neurobiology and his research team have now discovered that changes in the activity of a single gene in the brain not only cause mice to exhibit anxious behavior, but also lead to metabolic changes that cause them to develop symptoms associated with type 2 diabetes. These findings were published online this week in the Proceedings of the National Academy of Sciences (PNAS).

All of the body’s systems are involved in the stress response, which evolved to deal with threats and danger. Behavioral changes tied to stress include heightened anxiety and concentration, while changes in the body include heat generation, changes in the metabolism of various substances, and even changes in food preferences. What ties all of these things together? The Weizmann team suspected that a protein known as Urocortin-3 (Ucn3) was involved. This protein is produced in certain brain cells – especially in times of stress – and it’s known to play a role in regulating the body’s stress response. These nerve cells have extensions that act as “highways” that speed Ucn3 on to two other sites in the brain: One, in the hypothalamus – the brain’s center for hormonal regulation of basic bodily functions – oversees, among other things, substance exchange and feelings of hunger and satiety; the other is involved in regulating behavior, including levels of anxiety. Nerve cells in both these areas have special receptors for Ucn3 on their surfaces, and the protein binds to these receptors to initiate the stress response.

The researchers developed a new, finely tuned method for influencing the activity of a single gene in one area in the brain, using it to increase the amounts of Ucn3 produced in just that location. They found that heightened levels of the protein produced two different effects: The anxiety-related behavior of the mice increased, and their bodies underwent metabolic changes. With excess Ucn3, their bodies burned more sugar and fewer fatty acids, and their metabolic rates sped up. These mice began to show signs of the first stages of type 2 diabetes: A drop in muscle sensitivity to insulin delayed sugar uptake by the cells, resulting in raised sugar levels in the blood. Their pancreases then produced extra insulin to make up for the perceived deficit.

“We showed that the actions of a single gene in just one part of the brain can have profound effects on the metabolism of the whole body,” says Dr. Chen. This mechanism, which appears to be a smoking gun tying stress levels to metabolic disease, might, in the future, point the way toward the treatment or prevention of a number of stress-related diseases.

Participating in the research were research students Yael Kuperman, Orna Issler, Limor Regev, Ifat Musseri, Inbal Navon, and Adi Neufeld-Cohen, along with Shosh Gil, all of the Weizmann Institute’s Department of Neurobiology.

Dr. Alon Chen’s research is supported by the Nella and Leon Benoziyo Center for Neurosciences; the Carl and Micaela Einhorn-Dominic Brain Research Institute; the Croscill Home Fashions Charitable Trust; the Irwin Green Alzheimer’s Research Fund; Gerhard and Hannah Bacharach, Fort Lee, NJ; Mark Besen and the Pratt Foundation, Australia; Roberto and Renata Ruhman, Sao Paulo, Brazil; and Barry Wolfe, Woodland Hills, CA. Dr. Chen is the incumbent of the Philip Harris and Gerald Ronson Career Development Chair.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians, and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials, and developing new strategies for protecting the environment.

Jennifer Manning | Newswise Science News
Further information:
http://www.acwis.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>