Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find Gene Responsible for High-Cholesterol Levels in Blood

17.09.2010
Finding in Animal Model Offers Hope for Reducing Risk in Humans

Scientists at the Southwest Foundation for Biomedical Research (SFBR) have found a gene that causes high levels of bad cholesterol to accumulate in the blood as a result of a high-cholesterol diet.

Researchers studied a strain of laboratory opossums developed at SFBR that has normal blood levels of “bad” low-density lipoprotein (LDL) cholesterol when fed a standard low-cholesterol diet, but extremely elevated levels of LDL cholesterol when fed a high-cholesterol diet. These high-responding opossums are used to identify the genes and the underlying mechanisms that control response to dietary cholesterol.

“This research will improve our understanding of cholesterol metabolism and may shed light on why some people have high levels of bad cholesterol in blood while others do not when they consume cholesterol-enriched diets,” said John L. VandeBerg, Ph.D., SFBR’s chief scientific officer and senior author on the paper. Published in the October issue of the Journal of Lipid Research, the work was funded by the National Institutes of Health and the Robert J. Kleberg, Jr. and Helen C. Kleberg Foundation.

The study involved analyzing various lipids, or fats, in blood and bile to find differences in cholesterol metabolites, sequencing candidate genes of interest to find mutations, and determining the impact of each mutation by genetic analyses. This led to the discovery that the ABCB4 gene, which encodes a protein known to transport fats from the liver into bile to facilitate excretion of cholesterol from the body, is defective in the high responders. Malfunction of the ABCB4 protein was found to impair cholesterol excretion, causing bad cholesterol to accumulate in the blood when a high-cholesterol diet is consumed.

“This is the first report to show that ABCB4 has a role in controlling blood cholesterol levels in response to dietary cholesterol in an animal model,” said VandeBerg.

The next step is to determine if any ABCB4 mutations have an effect on levels of LDL cholesterol in humans who consume a high cholesterol diet. “If we can identify early in life those people who are going to be adversely affected by consumption of high levels of cholesterol, we can encourage their parents and them to receive individually tailored counseling to establish dietary habits that protect them from cardiovascular disease,” VandeBerg said.

Co-authors on the paper were Jeannie Chan, Ph.D., Michael C. Mahaney, Ph.D., Rampratap S. Kushwaha, Ph.D., and Jane F. VandeBerg in SFBR’s Department of Genetics. John VandeBerg can be reached through Joe Carey, SFBR’s Vice President for Public Affairs at 210-258-9437.

SFBR is one of the world's leading independent biomedical research institutions dedicated to advancing health worldwide through innovative biomedical research. Located on a 200-acre campus on the northwest side of San Antonio, Texas, SFBR partners with hundreds of researchers and institutions around the world, targeting advances in the fight against cardiovascular disease, diabetes, obesity, cancer, psychiatric disorders, problems of pregnancy, AIDS, hepatitis, malaria, parasitic infections and a host of other infectious diseases. For more information on SFBR, go to www.sfbr.org.

Joseph Carey | Newswise Science News
Further information:
http://www.sfbr.org

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

Rochester scientists discover gene controlling genetic recombination rates

23.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>