Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find gene that modifies severity of cystic fibrosis lung disease

05.03.2009
Researchers at Wake Forest University Baptist Medical Center, and colleagues, have identified a gene that modifies the severity of lung disease in people with cystic fibrosis, a lethal genetic condition. The findings open the door to possible new targets for treatment, researchers say.

The study appeared online last week in advance of print publication in Nature. It is the first published study to search the entire genome looking for genes that modify the severity of cystic fibrosis lung disease.

"This is a good example of researchers with different expertise coming together and using the knowledge gained from mapping the human genome to make discoveries that improve our understanding of cystic fibrosis," said Carl Langefeld, Ph.D., a study co-author and Wake Forest University School of Medicine researcher. "It may also help in the identification of targets for drug development and the development of tools for the earlier diagnosis of individuals with cystic fibrosis who are susceptible to severe lung disease."

After analyzing the genetic makeup of nearly 3,000 cystic fibrosis patients, researchers found that small genetic differences in a gene called IFRD1 correlate with lung disease severity. While probing how the gene might alter the disease's course, researchers discovered the protein encoded by IFRD1 is particularly abundant in a type of white blood cell called neutrophils, and that it regulates their function. Part of the immune system, neutrophils are known to cause inflammatory damage to the airways of people with cystic fibrosis.

"Neutrophils appear to be particularly bad actors in cystic fibrosis," said senior investigator Christopher Karp, M.D., the director of Molecular Immunology at Cincinnati Children's Hospital Medical Center. "They are important to the immune system's response to bacterial infection. In cystic fibrosis, however, neutrophilic airway inflammation is dysregulated, eventually destroying the lung."

Although it's been known for 20 years that cystic fibrosis is caused by mutations in the CFTR gene, the molecular mechanisms that link these mutations to the generation of lung disease still remain unclear. Increasingly evident in recent years is that variations in other genes also play a role in controlling cystic fibrosis lung disease severity.

Prior to the current study, IFRD1 was not really considered by researchers looking for genetic modifiers of disease severity, although the gene had been linked to stress responses in muscle and other tissues.

To further explore IFRD1's role in the disease process, the researchers studied mice in which the IFRD1 gene was removed. Deleting the gene confirmed its role in regulating inflammation and disease. While the absence resulted in delayed clearance of bacteria from the airway, it also resulted in less inflammation and disease.

The researchers also studied blood samples from healthy human volunteers to verify the impact of genetic differences in IFRD1 on neutrophil regulation. They found that the same IFRD1 variations that modified cystic fibrosis lung disease severity also altered neutrophil function in the healthy volunteers.

In a finding that may be the basis for novel approaches to treating cystic fibrosis, the investigators also determined that IFRD1's regulation of neutrophil function depends on its interaction with histone deacetylases – enzymes important for regulating gene transcription. Additional research is needed to better understand this interaction before its potential role for treatment is known, researchers report.

"It's possible that IFRD1 itself could become a target for treatment, but right now it's a signpost to pathways for further study," Karp said. "We want to find out what other genes and proteins IFRD1 interacts with, and how this is connected to inflammation in cystic fibrosis lung disease."

According to the National Cystic Fibrosis Foundation, cystic fibrosis is an inherited chronic disease that affects the lungs and digestive systems of about 30,000 children and adults in the United States and 70,000 worldwide. The defect in the CFTR gene causes the body to produce unusually thick, sticky mucus that clogs the lungs and leads to life-threatening lung infections. It also obstructs the pancreas and stops natural enzymes from helping the body break down and absorb food.

In the 1950s, few children with cystic fibrosis lived to attend elementary school. Today, advances in research and medical treatments have allowed people to live into their 30s or 40s. Despite these advances, the norm remains an ongoing decline in pulmonary function.

Jessica Guenzel | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>