Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find bone-marrow environment that helps produce infection-fighting T and B cells

25.02.2013
The Children's Medical Center Research Institute at UT Southwestern has deepened the understanding of the environment within bone marrow that nurtures stem cells, this time identifying the biological setting for specialized blood-forming cells that produce the infection-fighting white blood cells known as T cells and B cells.

The research found that cells called early lymphoid progenitors, which are responsible for producing T cells and B cells, thrive in an environment known as an osteoblastic niche. The investigation, published online today in Nature and led by Dr. Sean Morrison, also establishes a promising approach for scientists to map the entire blood-forming system.

Scientists already know how to manufacture large quantities of stem cells that give rise to the nervous system, skin, and other tissues. But they have been unable to make blood-forming stem cells in a laboratory, in part because of a lack of understanding about the niche in which blood-forming stem cells and other progenitor cells reside in the body.

"We believe this research moves us one step closer toward the development of cell therapies in the blood-forming system that don't exist today," said Dr. Morrison, Director of the Institute and Professor of Pediatrics at UT Southwestern Medical Center. "In understanding the environments for blood-forming stem cells and those of different kinds of progenitor cells, we can work toward reproducing those environments in the lab and growing cells that can be transplanted to treat a host of medical conditions."

These findings eventually may help increase the safety and effectiveness of bone-marrow transplants, such as those needed after healthy marrow is destroyed by radiation or chemotherapy treatments for childhood leukemia, Dr. Morrison said. The findings also may have implications for treating illnesses associated with loss of infection-fighting cells, such as HIV and severe combined immunodeficiency disease, better known as bubble boy disease.

The Nature study augments earlier work by Dr. Morrison and his team that showed endothelial cells and perivascular cells lining the blood vessels in the bone marrow create the environment that maintains haematopoietic stem cells, which produce billions of new blood cells every day. The latest study shows that bone-forming cells create the environment that maintains early lymphoid progenitors.

"Our research documents that there are different niches, or microenvironments, for blood-forming stem cells and restricted progenitors in the bone marrow," Dr. Morrison said. "One way that bone marrow makes different kinds of blood-forming cells is by compartmentalizing them into different neighborhoods within the marrow."

The researchers identified niches for stem cells and early lymphoid progenitors by determining which cells are the sources of a growth factor (CXCL12) necessary for the proliferation of those two populations of blood-forming cells. By taking the same approach for other growth factors in the bone marrow, researchers should be able to map the niches for every kind of blood-forming progenitor cell in the bone marrow, Dr. Morrison said.

The UTSW paper's first author is Dr. Lei Ding, a former postdoctoral research fellow at the Children's Research Institute and the Howard Hughes Medical Institute (HHMI) at UT Southwestern. Dr. Ding is now an assistant professor at Columbia University.

Research support came from the HHMI and the National Heart, Lung, and Blood Institute.

About the Children's Research Institute

Children's Medical Center Research Institute at UT Southwestern (CRI) is a joint venture positioned to build upon the comprehensive clinical expertise of Children's Medical Center and the internationally recognized scientific environment of UT Southwestern Medical Center. CRI's mission is to perform transformative biomedical research to better understand the biological basis of disease. Established in 2011, CRI is creating interdisciplinary groups of exceptional scientists and physicians to pursue research at the interface of regenerative medicine, cancer biology and metabolism, which together hold unusual potential for discoveries that can yield groundbreaking advances in science and medicine.

This news release is available on our World Wide Web home page at www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at www.utsouthwestern.edu/receivenews

Jeff Carlton | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht A Fluttering Accordion
04.08.2015 | Friedrich-Schiller-Universität Jena

nachricht Molecular Spies to Fight Cancer - Procedure for improving tumor diagnosis successfully tested
03.08.2015 | Helmholtz-Zentrum Dresden-Rossendorf

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greenhouse gases' millennia-long ocean legacy

Continuing current carbon dioxide (CO2) emission trends throughout this century and beyond would leave a legacy of heat and acidity in the deep ocean. These...

Im Focus: Glaciers melt faster than ever

Glacier decline in the first decade of the 21st century has reached a historical record, since the onset of direct observations. Glacier melt is a global phenomenon and will continue even without further climate change. This is shown in the latest study by the World Glacier Monitoring Service under the lead of the University of Zurich, Switzerland.

The World Glacier Monitoring Service, domiciled at the University of Zurich, has compiled worldwide data on glacier changes for more than 120 years. Together...

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Success 4.0 – Is Your Company Fit for the Future? New Series of Events for Executives

04.08.2015 | Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

 
Latest News

Small tilt in magnets makes them viable memory chips

04.08.2015 | Information Technology

New Design Brings World’s First Solar Battery to Performance Milestone

04.08.2015 | Power and Electrical Engineering

Magnetism at Nanoscale

04.08.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>