Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists find a new way to protect against lethal fungal infections


Scientists at the Institute of Molecular Biotechnology (IMBA) and the Max F. Perutz Laboratories (MFPL) in Vienna have discovered a new way to turn the immune system’s weapons against fungal invaders. This knowledge could lead to the development of new and improved anti-fungal treatments.

For most people, a simple case of thrush or athlete’s foot can be quickly and easily treated using over-the-counter anti-fungal creams and pills. However, even with medication, fungal pathogens can overwhelm a weakened immune system and cause systemic infections – as in people with HIV/AIDS, or organ transplant recipients, for example – posing a severe health risk.

Candida albicans (green) is being eaten by a dentritic cell (blue).


In fact, fungal pathogens have been classified as “hidden killers” and an estimated 1.5 million people around the world die from such systemic infections every year. There is yet no effective medicine available for systemic fungal infections.

Knowing the enemy

When fungal cells enter the body, they stand out from our own cells because they are ‘flagged’ with unique patterns of molecular markers. These ‘pathogen-associated molecular patterns’, or PAMPs for short, are recognised by receptor proteins on cells of the immune system. These receptors then activate signalling molecules triggering a cascade of different immune functions, such as inflammation, aimed at recruiting immune cells to the infected area. Those recruited immune cells will then, for example via the production of highly toxic reactive oxygen species, eliminate fungal pathogens.

“Unleashing” an immune response

Candida albicans is recognized by certain PAMP receptors, called Dectins, and triggers activation of the signalling molecule SYK. The first authors of the study, Gerald Wirnsberger (IMBA) and Florian Zwolanek (MFPL), now discovered that the protein CBL-B acts as a ‘brake’ in this pathway: when CBL-B is present, Dectin and SYK activity are dampened and immune responses are eventually ‘switched off’, but when CBL-B is absent, Dectin/SYK get over-activated and a protective anti-fungal immune responses occur.

Using this knowledge, the two research groups around Josef Penninger (IMBA) and Karl Kuchler (MFPL) – designed an inhibitory peptide to block CBL-B activity and thereby unleash defence mechanisms against invading fungal pathogens. After successfully testing this peptide with lab-grown cells, the peptide was used to treat Candida albicans infected mice. While untreated mice succumbed to the lethal infection, peptide treatment provided complete protection from fungal disease.

Gerald Wirnsberger explains: “This work constitutes a novel paradigm in antifungal therapy – a pharmacological modulation of the host immune response mediated by CBLB. A fundamental understanding of how molecular mechanisms either boost or damp our immune response against Candida albicans will pave the way for a drugs against deadly fungal infections”.

Original publication:
„Inhibition of CBLB protects from lethal Candida albicans sepsis“.
Gerald Wirnsberger, Florian Zwolanek, Tomoko Asaoka, Ivona Kozieradzki, Luigi Tortola, Reiner A Wimmer, Anoop Kavirayani, Friedrich Fresser, Gottfried Baier, Wallace Y Langdon, Fumiyo Ikeda, Karl Kuchler & Josef M Penninger.
Nature Medicine, July 18, 2016. doi: 10.1038/nm.4134.

Press contact:
Ines Méhu-Blantar
IMBA Communications
Dr. Bohrgasse 3, 1030 Vienna, Austria
Tel.: +43 664 808 47 3628

Mag. Ines Méhu-Blantar | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>