Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists find a groovy way to influence specialisation of stem cells

Researchers at Queen Mary University of London have shown for the first time that the specialised role stem cells go on to perform is controlled by primary cilia –tiny hair-like structures protruding from a cell.

Stem cells are capable of becoming any cell type within the body through the process of differentiation.

The discovery has the potential for application in the development of new therapies for a range of medical treatments where scientists aim to replace or regenerate tissues that have become diseased or dysfunctional.

Publishing in the journal Scientific Reports, the researchers found that growing adult stem cells on micro-grooved surfaces disrupts the biochemical pathway that determines the length of the primary cilia. This change in length of the structure ultimately controls the subsequent behaviour of the stem cells.

“Primary cilia are a thousand times smaller than the width of a human hair and are a ubiquitous feature of most cell types but were once thought to be irrelevant. However, our research shows that they play a key role in stem cell differentiation,” explains co-author Professor Martin Knight from Queen Mary’s School of Engineering and Materials Science and the Institute of Bioengineering.

“We found it’s possible to control stem cell specialisation by manipulating primary cilia elongation, and that this occurs when stem cells are grown on these special grooved surfaces.”

Stem cells are being considered to treat a number of degenerative conditions such as arthritis, Alzheimer's disease and Parkinson's disease.

This work was funded by the Wellcome Trust.

‘Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells’ is published in the journal Scientific Reports on Wednesday 18 December 2013.

For more information or to arrange interviews with the authors, please contact:
Neha Okhandiar
Public Relations Manager
Queen Mary University of London
020 7882 7927

Queen Mary University of London is one of the UK's leading research-focused higher education institutions with some 17,840 undergraduate and postgraduate students.
A member of the Russell Group, it is amongst the largest of the colleges of the University of London. Queen Mary’s 4,000staff deliver world class degree programmes and research across 21 academic departments and institutes, within three Faculties: Science and Engineering; Humanities and Social Sciences; and the School of Medicine and Dentistry.
Queen Mary is ranked 11th in the UK according to the Guardian analysis of the 2008 Research Assessment Exercise, and has been described as ‘the biggest star among the research-intensive institutions’ by the Times Higher Education.
The College has a strong international reputation, with around 20 per cent of students coming from over 100 countries. Queen Mary has an annual turnover of £300m, research income worth £90m, and generates employment and output worth £600m to the UK economy each year.

The College is unique amongst London's universities in being able to offer a completely integrated residential campus, with a 2,000-bed award-winning Student Village on its Mile End campus.

Neha Okhandiar
Public Relations Manager - Science and Engineering
Marketing and Communications
Queen Mary University of London
327 Mile End Road, London, E1 4NS
T: +44 (0)207 882 7927
M: +44 (0)788 591 2572
Tw: @QMsciencehound and @QMUL

Neha Okhandiar | Queen Mary University of London
Further information:

Further reports about: Stem cell adult stem cell cell type medical treatment stem cells

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>