Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Explain The Persistence Of Melanoma Through “Dynamic Stemness”

14.05.2010
Findings Suggest Each Melanoma Cell Capable of “Cancer Stem Cell” Behavior

Scientists at The Wistar Institute offer a new explanation for the persistent ability of melanoma cells to self-renew, one of the reasons why melanoma remains the deadliest form of skin cancer. The concept of the “dynamic stemness” of melanoma can explain why melanoma cells behave like both conventional tumor cells and cancer stem cells.

The researchers write in the May 14 issue of the journal Cell that—contrary to other published reports—melanoma does not appear to follow the hierarchic cancer stem cell model, where a single malignant “mother cell” both reproduces to produce new mother cells and differentiates to produce the bulk tumor population. Instead, all melanoma cells equally harbor cancer stem cell potential and are capable of inducing new tumors. Their findings reveal the unique biology of melanoma, and suggest that melanoma requires a new therapeutic approach.

“Targeting only the bulk tumor population, as most conventional anticancer therapies do, is pointless in melanoma, in that each cell can act as a seed for the tumors to rebound,” said Meenhard Herlyn, D.V.M., D.Sc., professor and leader of Wistar’s Molecular and Cellular Oncogenesis Program. “The other implication is that we should stop hunting for a cancer stem cell, because it won’t be there.”

The traditional view of cancer holds that cancers arise following a random accumulation of malignant events, e.g. mutations, gradually imparting enough growth advantages that a cell can grow unchecked. Over the last decade, scientists have developed a cancer stem cell concept that explains how the slow growth and persistence of mother cells allow tumors to persist following treatment. Melanoma, for one, seems to follow a third path, dynamic stemness, where the stem cell-like behavior is not confined to mother cells alone, Herlyn says.

In the study, Herlyn and his colleagues describe a slow-growing subpopulation of melanoma tumor cells, defined by the protein JARID1B, which is required for tumor maintenance. Genetically blocking the ability of cells to express—or produce—this protein “exhausts” the tumor, preventing its proliferation. Yet unlike classic cancer stem cells, this subpopulation is highly plastic: JARID1B-expressing cells can turn off the gene, and JARID1B-non-expressing cells can turn it on.

Their findings suggest that melanoma requires a two-pronged therapeutic approach, says Herlyn. One is needed to target the bulk of the tumor, while another one should specifically target the slow-growing, JARID1B-positive subpopulation. “It’s a dual therapy that we are proposing,” said Herlyn.

According to the study’s lead author, Alexander Roesch, M.D., of the Regensburg University Medical Center in Germany and a visiting scientist in the Herlyn laboratory at The Wistar Institute, the growth could explain the disease’s notorious therapy resistance. “A slow-growing JARID1B-positive subpopulation of tumor cells, immune to most therapies, can spontaneously convert to a fast-growing JARID1B-negative population, which can rapidly replenish the tumor,” Roesch said.

The present study arose when Roesch discovered a link between the potential of JARID1B to decrease proliferation of melanoma cells and control stemness. He decided to see whether JARID1B could be a marker of slow growing melanoma stem cells. Initially, the results were promising, he says. JARID1B-expressing cells were slow-growing (as stem cells often are), and rare, accounting for about 5 percent of the tumor population. “At this point we were really happy because we thought we had found a cancer stem cell marker,” Roesch said.

But then, two unexpected results occurred. First, Roesch found that all melanoma cells were equally capable of initiating tumors in a mouse model, regardless of whether they expressed JARID1B or not. Second, he found that JARID1B expression did not conform to the traditional model of stem cell development – cells that expressed the gene could turn it off, and cells that didn’t, could turn it on. In other words, the gene’s expression was plastic, rather than stable. “Basically, our data suggest that every melanoma cell can serve as source for indefinite replenishment of the tumor,” said Roesch.

At the moment, the researchers do not suggest that the cancer stem cell model is wrong in any other tumors; their results apply only to melanoma, which may represent a special case.

Along with senior author Herlyn and first author Roesch, co-authors from the Herlyn laboratory include staff scientist Mizuho Fukunaga-Kalabis M.D., Ph.D.; post-doctoral fellows Susan E. Zabierowski, Ph.D., and Adina Vultur, Ph.D.; research technician Elizabeth C. Schmidt; research associate Patricia A. Brafford; and visting scientist Devraj Basu, M.D., Ph.D., of the University of Pennsylvania School of Medicine. Co-authors also include Phyllis Gimotty, Ph.D., of the University of Pennsylvania School of Medicine and Thomas Vogt, M.D., Regensburg University Medical Center.

The research was supported by grants from the US National Institutes of Health and the German Research Foundation.

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the country, Wistar has long held the prestigious Cancer Center designation from the National Cancer Institute. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. The Wistar Institute: Today’s Discoveries – Tomorrow’s Cures.

Greg Lester | Newswise Science News
Further information:
http://www.wistar.org

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>