Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists eavesdrop on the exciting conversations within cells

26.02.2009
Scientists have discovered the secrets of a sophisticated molecule that plays a role in many aspects of human health from fertility to blood pressure; digestion to mental health. This has opened up the potential for discovery of new drugs to treat an enormous variety of conditions.

In research supported by the Biotechnology and Biological Sciences Research Council (BBSRC) and the Wellcome Trust a team from the University of Cambridge shows how a molecule – the IP3 receptor – arranges itself into clusters to help broadcast vital chemical messages around cells in the form of calcium. The work is published today (25 February) in Nature.

Team leader, Professor Colin Taylor said: "Almost everything a cell does is regulated by calcium, and we know there are many diseases in both humans and animals, such as stroke or an irregular heart beat, in which calcium regulation goes wrong. But the real puzzle is trying to understand how calcium – which is amongst the simplest of all chemicals – can manage to control lots of different things at the same time. What we have found is a crucial part of that puzzle.

"Imagine you're trying to find a dancing partner at a party. You might whisper the request to several people, or you might shout it out to everyone. Some of your handful of whispered requests might be ignored and some may have you heading for the dance floor. If you shout loud enough, everyone gets to decide whether to respond. It's rather similar with messages transmitted by calcium signals: they can evoke very different responses in cells depending on whether they are whispered or shouted."

The research published today shows that when cells are stimulated, their IP3 receptors receive instructions telling them to both gather into clusters and to open and allow calcium to pass. Furthermore, IP3 receptors behave very differently when they are alone as opposed to clustered, and these differences help determine whether the calcium signal is "whispered" or "shouted".

Professor Taylor continued: "The IP3 receptors that we work on are interesting because we've found that they can both whisper and shout. Lone IP3 receptors whisper, but when they get together they can shout – not just because their combined effort is bigger, but because the calcium they release stimulates their neighbours to release calcium as well.

"We need to understand fully how IP3 receptors work if we are to begin to think of them as future targets for drugs. The clustering that we have observed fills an important gap in this understanding and takes us a step closer to being able to design drugs for a number of important diseases where we know calcium regulation goes wrong."

Professor Janet Allen, Director of Research, BBSRC said: "There is still an awful lot we don't know about the way healthy humans work. Until we get to the bottom of how complex biological processes work, what it is about them that maintains health, and where the potential points of intervention might be when things go wrong, there will be many diseases that we will not be able to treat effectively. It is reassuring to see fundamental work going on that can deliver answers to these questions. We are delighted that Professor Taylor's group have been recognised for their achievements in this area and congratulate them on publication of their Nature paper."

Nancy Mendoza | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>