Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Use DNA Sequencing to Attack Lung Cancer

Aided by next-generation DNA sequencing technology, an international team of researchers has gained insights into how more than 60 carcinogens associated with cigarette smoke bind to and chemically modify human DNA, ultimately leading to cancer-causing genetic mutations.

In a new study available online and in a future issue of the journal Nature, lung-cancer experts in the Harold C. Simmons Comprehensive Cancer Center at UT Southwestern Medical Center worked with scientists from the Cancer Genome Project in the United Kingdom to determine the entire genetic sequence of cancer cells from a patient with small-cell lung cancer (SCLC). They then compared those results with normal DNA isolated from the same patient.

Using new DNA sequencing technology called “massively parallel sequencing,” the researchers searched the DNA sequences for differences between tumor and normal cells. They found more than 23,000 mutations that the tumor cells had acquired and also discovered a new gene involved in lung cancer named CHD7.

The number of mutations from the study suggests that a person may develop one mutation for every 15 cigarettes smoked, said Dr. John Minna, director of the Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research at UT Southwestern and one of the authors of the new study.

The researchers said the findings illustrate the power of advanced technology to provide important new information about human cancer, including the effect of cancer-causing chemicals on the body and the identification of potential new therapeutic targets.

“Cancer is driven by acquired mutations in genes, and we are at a point where it soon will be possible to actually know every mutation in the tumors of each of our patients,” Dr. Minna said.

“The key will be to use this information to find new ways to help prevent cancers, diagnose them earlier and to select treatments that might be specific for each patient’s tumor. While these findings are the first step, they have lighted our path to clearly point us in the right direction. In addition, they provide the first detailed analysis of a human cancer – lung cancer – that is closely linked to smoking.”

Dr. Minna and Dr. Adi Gazdar, professor of pathology in the Hamon Center at UT Southwestern, provided the SCLC cells and normal cells for the research. Dr. Minna, who also directs the W.A. “Tex” and Deborah Moncrief Jr. Center for Cancer Genetics, and Dr. Gazdar have developed one of the most extensive collections of lung-cancer cell lines, which are used by researchers worldwide in studies of the disease. The SCLC and normal cells used in the study are designated NCI-H209 and NCI-BL209, respectively, and were established from a patient Drs. Minna and Gazdar treated 30 years ago.

When the researchers analyzed the 23,000 mutations, they found distinctive patterns associated with the cocktail of carcinogens present in cigarette smoke. The DNA sequence of the cancer cells also revealed that the cells had attempted to repair their smoke-damaged DNA using two mechanisms, but the cells were only partially successful.

Cigarette smoke deposits hundreds of chemicals into the airways and lungs. The longer one smokes and the more cigarettes smoked each day, the higher the risk of developing lung cancer and mutations.

“By applying the same approach to other cancers not associated with cigarette smoking, including the very large group of people who develop lung cancer but have never smoked, it may be possible to discern which carcinogens play a role in those other cancers as well,” Dr. Gazdar said.

Dr. Minna added that the research methods used to analyze the cancer cells represented a technological tour de force.

“The data demonstrate the power of whole-genome sequencing to untangle the complex mutational signatures found in cancers induced by cigarette smoke,” Dr. Minna said. “In addition, the protein product of the CHD7 gene now becomes a new marker for early diagnosis and also for potentially targeted therapy.”

Lung cancer is the leading cause of cancer-related deaths worldwide, developing in more than a million patients annually. People who smoke are 10 to 20 times more likely to get lung cancer or die from lung cancer than people who do not smoke. SCLC represents 15 percent of these cases and is associated with early metastasis, relapse after initial response to chemotherapy and less than a two-year survival rate.

The study was supported by grants from the Wellcome Trust, the Human Frontiers Science Program and the National Cancer Institute.

Visit to learn more about UT Southwestern’s clinical services in cancer.

Connie Piloto | Newswise Science News
Further information:,2356,14991,00.html

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>