Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists have discovered the cause of the hereditary disease PCH

20.08.2008
Most of those affected have a common ancestor

Scientists from Cologne and Amsterdam have discovered the mutations in human genetics, which cause the hereditary disease ponto cerebellar hypoplasia (PCH) of the types 2 and 4.

“In the case of PCH, the protein complex – the so-called tRNA-Splicing-Endonuclease, is mutated. This complex in involved in the manufacture of proteins in the human body and was identified in connection with a disease for the first time,” reports Birgit Budde from the Cologne Center for Genomics and Institute for Genetics of the University of Cologne.

The disease PCH occurs when certain areas of the brain do not develop properly; this results in severe mental and physical developmental disorders. Life expectancy of those affected ranges from a few months to a few years. PCH2 was first described as a syndrome in 1990 with reference to persons affected who came from the Dutch fishing village Volendam.

Due to historical reasons, the village became isolated and remained so over centuries; the inhabitants began to marry close relatives. This resulted in a conspicuously high amount of cases of the illness in this village, as PCH usually only occurs, when both parents pass on the predisposition for this disease. Families from Volendam were the starting point for the present study.

In the mean time, cases of the disease have been discovered in other parts of Europe. Based on these, scientists have been able to prove that the majority of the cases of PCH2, including those of the village of Volendam, have a common ancestor. This common ancestor lived during the 17th century. The results of the most recent research will be published in the renowned magazine Nature Genetics. “The identification of mutations, which cause PCH2 and PCH4, is an important step in the research of ponto cerebellar hypoplasia,” according to Dr. Budde.

Patrick Honecker | alfa
Further information:
http://www.uni-koeln.de
http://www.ccg.uni-koeln.de/

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>