Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists have discovered genes that increase the risk of osteoporosis and fractures

23.04.2012
Researchers at the Sahlgrenska Academy at the University of Gothenburg, Sweden, have identified the genetic variations that are believed to cause osteoporosis.
The study, published in Nature Genetics and involving leading researchers from Sweden and the world, shows among other interesting facts that women with a higher proportion of genetic variations associated with osteoporosis have a more than 50 percent increased fracture risk.

Osteoporosis is a common and a devastating age-related disease about 50 percent of all who have a hip fracture after age 80 die within one year from the time of injury. The consequences of osteoporosis are therefore well-known, but the causes of the disease are largely unknown.

56 genetic regions for bone density
In a groundbreaking international study, which is led partially from the Sahlgrenska Academy, researchers have now succeeded in identifying a total of 56 genetic regions that control bone density in human beings. Fourteen of these genetic variants increase the risk of fractures, the study, which has been published in the world-leading journal Nature Genetics, has shown.
”This is the first time anyone has identified the genetic variants that are so strongly associated with an increased risk of fracture,” comments Claes Ohlsson, a professor at the Sahlgrenska Academy.

Study on 80,000 people
An international consortium, which also involves researchers from Umeå University, Uppsala University and Malmö University, is behind the study. In total, the researchers studied the genetic make-up of a total of 80,000 people and 30,000 fracture cases, making it the world's largest genetic study in this particular area of research.
”We can prove that women who have a large number of genetic variants associated with low bone density have up to a 56 percent higher risk of osteoporosis as compared with women who have a normal set-ups of the same genetic variants,” comments Claes Ohlsson.

Targets for new treatment methods
The results have led to several new findings in bone biology, among other things the researchers identified several important molecular signaling pathways for bone density that can be targets for new treatment methods and therapies.

”In addition to already known proteins and pathways that were confirmed by the study, we are now facing a whole new biology in the field of bone research,” comments Ulrika Pettersson, Associate Professor in the Department of Pharmacology and Clinical Neuroscience, Umeå University, and co-author of the study.

The article ”Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with the risk of fracture” has been published in Nature Genetics on 15 April.

The study is part of the EU-funded project: Genetic Factors of Osteoporosis (GEFOS).

Bibliographic data:
Journal: Nature
Title: Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture
Authors: Karol Estrada, Unnur Styrkarsdottir, Evangelos Evangelou, Yi-Hsiang Hsu, Emma L Duncan, Evangelia E Ntzani, Ling Oei, Omar M E Albagha, Najaf Amin, John P Kemp, Daniel L Koller, Guo Li, Ching-Ti Liu, Ryan L Minster, Alireza Moayyeri, Liesbeth Vandenput, Dana Willner, Su-Mei Xiao, Laura M Yerges-Armstrong,Hou-Feng Zheng,Nerea Alonso,Joel Eriksson,Candace M Kammerer,Stephen K Kaptoge,Paul J Leoet al.

For further information please contact:
Claes Ohlsson, Professor at the Center for Bone and Arthritis Research, Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, at the University of Gothenburg

E-mail: claes.ohlsson@medic.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://bit.ly/HC0qC4

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>