Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists have discovered genes that increase the risk of osteoporosis and fractures

23.04.2012
Researchers at the Sahlgrenska Academy at the University of Gothenburg, Sweden, have identified the genetic variations that are believed to cause osteoporosis.
The study, published in Nature Genetics and involving leading researchers from Sweden and the world, shows among other interesting facts that women with a higher proportion of genetic variations associated with osteoporosis have a more than 50 percent increased fracture risk.

Osteoporosis is a common and a devastating age-related disease about 50 percent of all who have a hip fracture after age 80 die within one year from the time of injury. The consequences of osteoporosis are therefore well-known, but the causes of the disease are largely unknown.

56 genetic regions for bone density
In a groundbreaking international study, which is led partially from the Sahlgrenska Academy, researchers have now succeeded in identifying a total of 56 genetic regions that control bone density in human beings. Fourteen of these genetic variants increase the risk of fractures, the study, which has been published in the world-leading journal Nature Genetics, has shown.
”This is the first time anyone has identified the genetic variants that are so strongly associated with an increased risk of fracture,” comments Claes Ohlsson, a professor at the Sahlgrenska Academy.

Study on 80,000 people
An international consortium, which also involves researchers from Umeå University, Uppsala University and Malmö University, is behind the study. In total, the researchers studied the genetic make-up of a total of 80,000 people and 30,000 fracture cases, making it the world's largest genetic study in this particular area of research.
”We can prove that women who have a large number of genetic variants associated with low bone density have up to a 56 percent higher risk of osteoporosis as compared with women who have a normal set-ups of the same genetic variants,” comments Claes Ohlsson.

Targets for new treatment methods
The results have led to several new findings in bone biology, among other things the researchers identified several important molecular signaling pathways for bone density that can be targets for new treatment methods and therapies.

”In addition to already known proteins and pathways that were confirmed by the study, we are now facing a whole new biology in the field of bone research,” comments Ulrika Pettersson, Associate Professor in the Department of Pharmacology and Clinical Neuroscience, Umeå University, and co-author of the study.

The article ”Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with the risk of fracture” has been published in Nature Genetics on 15 April.

The study is part of the EU-funded project: Genetic Factors of Osteoporosis (GEFOS).

Bibliographic data:
Journal: Nature
Title: Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture
Authors: Karol Estrada, Unnur Styrkarsdottir, Evangelos Evangelou, Yi-Hsiang Hsu, Emma L Duncan, Evangelia E Ntzani, Ling Oei, Omar M E Albagha, Najaf Amin, John P Kemp, Daniel L Koller, Guo Li, Ching-Ti Liu, Ryan L Minster, Alireza Moayyeri, Liesbeth Vandenput, Dana Willner, Su-Mei Xiao, Laura M Yerges-Armstrong,Hou-Feng Zheng,Nerea Alonso,Joel Eriksson,Candace M Kammerer,Stephen K Kaptoge,Paul J Leoet al.

For further information please contact:
Claes Ohlsson, Professor at the Center for Bone and Arthritis Research, Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, at the University of Gothenburg

E-mail: claes.ohlsson@medic.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://bit.ly/HC0qC4

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>