Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover Cause of Weakness in Marine Animal Hybrids

14.10.2008
Genetic dysfunction found in crustaceans holds implications for stem cell research, cloning and agriculture.

Scientists at Scripps Institution of Oceanography at UC San Diego have shown for the first time that a genetic malfunction found in marine crustaceans called copepods likely explains why populations of animals that diverge and eventually reconnect produce weak "hybrid" offspring.

Hybrid animals result when populations of a given species separate from one another, undergoing genetic mutations while apart and eventually reestablish ties and interbreed. Hybrids often suffer from lower fertility levels, slower development and higher rates of mortality due to environmental causes.

The new research described by Christopher Ellison and Ronald Burton of Scripps Oceanography is published in this week's online edition of the Proceedings of the National Academy of Sciences.

"In addition to informing us about evolutionary processes, this research has important implications for a variety of biomedical and agricultural practices, such as stem cell production and cloning of domestic animals," said Burton, a professor in the Marine Biology Research Division at Scripps.

For the past several years, Ellison and Burton have been studying copepods of the species Tigriopus californicus, animals about one millimeter in length that live in coastal intertidal habitats. The researchers produced hybrid specimens in the laboratory by mating animals from San Diego, Los Angeles and Santa Cruz, Calif. At their home between high and low tides, these copepods experience rapid changes in their environment, such as when rainwater dilutes tide pools and the animals are forced to "up-regulate," or activate, specific genes to produce the energy required to manage the stress caused by the rapid change in salinity levels.

Ellison and Burton found that hybrids were incapable of turning on the required genes, and traced this "gene regulation" malfunction to mitochondria, the location inside cells where energy is generated. They further pinned the problem area to a single enzyme, called "RNA polymerase," for the failed trigger.

"In hybrids we found that these genes don't turn on in response to stress, which means the animals don't have enough energy, and that leads to low survivorship," said Burton.

Burton said the study demonstrates how evolution continually molds the interactions of genes in animal populations.

"When populations are hybridized, genes that normally work well within populations are forced to interact with genes from other populations, sometimes leading to dramatic incompatibilities," said Burton. "When the incompatibility affects something as central as cellular energy production, as in Tigriopus, it is not surprising that hybrids show slower growth and reduced reproduction and survivorship."

Burton added that the results of the new study hold implications for stem cell research and animal cloning, as those efforts involve taking components of one cell and placing them into another, situations that test gene compatibility and interaction. The findings also may be applicable to agriculture where many crop plants are of hybrid origin.

Ongoing and future studies in Burton's laboratory involve examinations of hybrids with close geographical ties, such as those that live in close proximity in Southern California, to probe the genetic breakdowns more closely. His group also is attempting to replicate the mechanisms in a test tube, experimenting with various DNA and enzyme combinations that might exhibit the problem.

Ellison, who contributed to the research while a graduate student at Scripps and is now a postdoctoral researcher at Cornell University, earned the 2007 Edward A. Frieman Prize from Scripps for research that paved the way to the new study.

Grants from the National Science Foundation and the National Institutes of Health supported the research.

Mario Aguilera | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>