Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover “Thunder” Protein That Regulates Memory Formation

18.04.2011
Work in mice has implications for treating autism, post-traumatic stress

Researchers at Johns Hopkins have discovered in mice a molecular wrecking ball that powers the demolition phase of a cycle that occurs at synapses — those specialized connections between nerve cells in the brain — and whose activity appears critical for both limiting and enhancing learning and memory.

The newly revealed protein, which the researchers named thorase after Thor, the Norse god of thunder, belongs to a large family of enzymes that energize not only neurological construction jobs but also deconstruction projects. The discovery is described in the April 15 issue of Cell.

“Thorase is vital for keeping in balance the molecular construction-deconstruction cycle we believe is required for memory formation,” explains Valina Dawson, professor of neurology and neuroscience in the Johns Hopkins Institute of Cell Engineering. “It’s a highly druggable target, which, depending on whether you enhance or inactivate it, may potentially result in new treatments for autism, PTSD, and memory dysfunction.”

The enzyme is one of many AAA+ ATPases that drive the assembly of proteins needed to form specialized receptors at the surfaces of synapses. These receptors are stimulated by neighboring neurons, setting up the signaling and answering connections vital to brain function. The Hopkins team showed how thorase regulates the all-important complementary process of receptor disassembly at synapses, which ultimately tamps down signaling.

Prolonged excitation or inhibition of these receptors — due to injury, disease, genetic malfunction or drugs — has been implicated in a wide array of learning and memory disorders. “Change in the strength of the connections between two nerve cells forms the basis of our ability to learn and remember,” Dawson says. This phenomenon, called synaptic plasticity, depends upon a balanced alternation of excitation and inhibition of receptors, she adds.

Using a powerful microscope to look at labeled neurons from the brains of mice, the scientists saw that thorase was concentrated in the synaptic regions of cells, leading them to focus studies on the protein interactions that happen there.

First, they cut a protein aptly called GRIP1 — it acts as scaffolding to hold GluR2 receptors to the surface — into various chunks and combined it with thorase. Encouraged by the fact that thorase and the GRIP1 scaffold did indeed bind tightly, they teased out the physiology of that interaction in the presence of lots of thorase and then no thorase.

They discovered that the more thorase, the quicker the scaffolding deconstructed and the faster the surface receptors decreased. Thorase causes GluR2 receptors and GRIP1 to release their hold on each other, and therefore the receptor’s grip at the surface of the synapse, they concluded.

To see if the deconstruction of the protein complex had any effect on nerve-signaling processes, they again used cells to record receptor activity by measuring electric currents as they fluxed through cells with and without thorase. In the presence of extra thorase, surface receptor expression was decreased, resulting in reduced signaling.

Next, the team measured the rates of receptor recycling by tagging the protein complex with a fluorescent marker. It could then be tracked as it was subsequently reinserted back into the surface membrane of a cell. In cells in which thorase was knocked out, there was very little deconstruction/turnover compared to normal cells. The scientists reversed the process by adding back thorase.

Finally, the team conducted a series of memory tasks in order to compare the behaviors of normal mice with those genetically modified to lack thorase. When the animals lacking thorase were put into a simple maze, their behaviors revealed they had severe deficits in learning and memory.

“Mice lacking thorase appear to stay in a constant state of stimulation, which prevents memory formation,” Dawson explains. “Their receptors get up to the membrane where they are stimulated, but they aren’t being recycled if thorase isn’t present. If thorase doesn’t stop the excitation by recycling the receptor, it continues on and has deleterious effects.”

Support for this research came from the National Institute for Aging and the Intramural Research Program of the National Institute on Aging, McKnight Endowment for Neuroscience, American Heart Association and the Simon’s Foundation Autism Research Initiative.

Authors of the paper, in addition to Valina Dawson, are Jianmin Zhang, Yue Wang, Zhikai Chi, Matthew J. Keuss, Ying-Min Emily Pai, Ho Chul Kang, Jooho Shin, Artem Bugayenko, Hong Wang, Yulan Xiong, Mikhail V. Pletnikov, Mark P. Mattson, and Ted M. Dawson, all of Johns Hopkins.

On the Web:
Valina Dawson lab: http://neuroscience.jhu.edu/ValinaDawson.php
Cell: http://www.cell.com/current

Maryalice Yakutchik | Newswise Science News
Further information:
http://www.jhmi.edu

Further reports about: GluR2 Protein Regulates brain aging cell death nerve cell

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>