Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover “Thunder” Protein That Regulates Memory Formation

18.04.2011
Work in mice has implications for treating autism, post-traumatic stress

Researchers at Johns Hopkins have discovered in mice a molecular wrecking ball that powers the demolition phase of a cycle that occurs at synapses — those specialized connections between nerve cells in the brain — and whose activity appears critical for both limiting and enhancing learning and memory.

The newly revealed protein, which the researchers named thorase after Thor, the Norse god of thunder, belongs to a large family of enzymes that energize not only neurological construction jobs but also deconstruction projects. The discovery is described in the April 15 issue of Cell.

“Thorase is vital for keeping in balance the molecular construction-deconstruction cycle we believe is required for memory formation,” explains Valina Dawson, professor of neurology and neuroscience in the Johns Hopkins Institute of Cell Engineering. “It’s a highly druggable target, which, depending on whether you enhance or inactivate it, may potentially result in new treatments for autism, PTSD, and memory dysfunction.”

The enzyme is one of many AAA+ ATPases that drive the assembly of proteins needed to form specialized receptors at the surfaces of synapses. These receptors are stimulated by neighboring neurons, setting up the signaling and answering connections vital to brain function. The Hopkins team showed how thorase regulates the all-important complementary process of receptor disassembly at synapses, which ultimately tamps down signaling.

Prolonged excitation or inhibition of these receptors — due to injury, disease, genetic malfunction or drugs — has been implicated in a wide array of learning and memory disorders. “Change in the strength of the connections between two nerve cells forms the basis of our ability to learn and remember,” Dawson says. This phenomenon, called synaptic plasticity, depends upon a balanced alternation of excitation and inhibition of receptors, she adds.

Using a powerful microscope to look at labeled neurons from the brains of mice, the scientists saw that thorase was concentrated in the synaptic regions of cells, leading them to focus studies on the protein interactions that happen there.

First, they cut a protein aptly called GRIP1 — it acts as scaffolding to hold GluR2 receptors to the surface — into various chunks and combined it with thorase. Encouraged by the fact that thorase and the GRIP1 scaffold did indeed bind tightly, they teased out the physiology of that interaction in the presence of lots of thorase and then no thorase.

They discovered that the more thorase, the quicker the scaffolding deconstructed and the faster the surface receptors decreased. Thorase causes GluR2 receptors and GRIP1 to release their hold on each other, and therefore the receptor’s grip at the surface of the synapse, they concluded.

To see if the deconstruction of the protein complex had any effect on nerve-signaling processes, they again used cells to record receptor activity by measuring electric currents as they fluxed through cells with and without thorase. In the presence of extra thorase, surface receptor expression was decreased, resulting in reduced signaling.

Next, the team measured the rates of receptor recycling by tagging the protein complex with a fluorescent marker. It could then be tracked as it was subsequently reinserted back into the surface membrane of a cell. In cells in which thorase was knocked out, there was very little deconstruction/turnover compared to normal cells. The scientists reversed the process by adding back thorase.

Finally, the team conducted a series of memory tasks in order to compare the behaviors of normal mice with those genetically modified to lack thorase. When the animals lacking thorase were put into a simple maze, their behaviors revealed they had severe deficits in learning and memory.

“Mice lacking thorase appear to stay in a constant state of stimulation, which prevents memory formation,” Dawson explains. “Their receptors get up to the membrane where they are stimulated, but they aren’t being recycled if thorase isn’t present. If thorase doesn’t stop the excitation by recycling the receptor, it continues on and has deleterious effects.”

Support for this research came from the National Institute for Aging and the Intramural Research Program of the National Institute on Aging, McKnight Endowment for Neuroscience, American Heart Association and the Simon’s Foundation Autism Research Initiative.

Authors of the paper, in addition to Valina Dawson, are Jianmin Zhang, Yue Wang, Zhikai Chi, Matthew J. Keuss, Ying-Min Emily Pai, Ho Chul Kang, Jooho Shin, Artem Bugayenko, Hong Wang, Yulan Xiong, Mikhail V. Pletnikov, Mark P. Mattson, and Ted M. Dawson, all of Johns Hopkins.

On the Web:
Valina Dawson lab: http://neuroscience.jhu.edu/ValinaDawson.php
Cell: http://www.cell.com/current

Maryalice Yakutchik | Newswise Science News
Further information:
http://www.jhmi.edu

Further reports about: GluR2 Protein Regulates brain aging cell death nerve cell

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>