Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover the evolutionary link between protein structure and function

19.05.2016

Proteins are more than a dietary requirement. This diverse set of molecules powers nearly all of the cellular operations in a living organism. Scientists may know the structure of a protein or its function, but haven't always been able to link the two.

"The big problem in biology is the question of how a protein does what it does. We think the answer rests in protein evolution," says University of Illinois professor and bioinformatician Gustavo Caetano-Anollés.


The two loops, shown in gold near the bottom of the protein structure, delimit the pocket where heme subunit resides and where oxygenation occurs.

Credit: Gustavo Caetano-Anollés

Geologists have found remnants of life preserved in rock billions of years old. In some cases, preservation of microbes and tissues has been so good that microscopic cellular structures that were once associated with specific proteins, can be detected.

This geological record gives scientists a hidden connection to the evolutionary history of protein structures over incredibly long time periods. But, until now, it hasn't always been possible to link function with those structures to know how proteins were behaving in cells billions of years ago, compared with today.

"For the first time, we have traced evolution onto a biological network," Caetano-Anollés notes.

Caetano-Anollés and graduate students Fayez Aziz and Kelsey Caetano-Anollés used networks to investigate the linkage between protein structure and molecular function. They built a timeline of protein structures spanning 3.8 billion years across the geological record, but needed a way to connect the structures with their functions. To do that, they looked at the genetic makeup of hundreds of organisms.

"It turns out that there are little snippets in our genes that are incredibly conserved over time," Caetano-Anollés says. "And not just in human genomes. When we look at higher organisms, such as plants, fungi and animals, as well as bacteria, archaea, and viruses, the same snippets are always there. We see them over and over again."

The research team found that these tiny gene segments tell proteins to produce "loops," which are the tiniest structural units in a protein. When loops come together, they create active sites, or molecular pockets, which give proteins their function. For example, hemoglobin, the protein that carries oxygen in blood, has two loops which create the active site that binds oxygen. The loops combine to create larger protein structures called domains.

Remarkably, the new study shows that loops have been repeatedly recruited to perform new functions and that the process has been active and ongoing since the beginning of life.

"This recruitment is important for understanding biological diversity," Caetano-Anollés says.

One important aspect of the study relates to the actual linkage between domain structure and functional loops. The researchers found that this linkage is characterized by an unanticipated property that unfolds in time, an "emergent" property known as hierarchical modularity.

"Loops are cohesive modules, as are domains, proteins, cells, organs, and bodies." Caetano-Anollés explains. "We are all made of cohesive modules, including our human bodies. That's hierarchical modularity: the building of small cohesive parts into larger and increasingly complex wholes."

Hierarchical modularity also exists in manmade networks, such as the internet. For example, each router represents a "node" that pushes information to different computers. When millions of computers interact with each other online, larger and more complex entities emerge. Caetano-Anollés suggests that the evolution of manmade networks could be mapped in the same way as the evolution of biological networks.

"From a computer science point of view, few people have been exploring how to track networks in time. Imagine exploring how the internet grows and changes when new routers are added, are disconnected, or network with each other. It's a daunting task because there are millions of routers to track and internet communication can be highly dynamic. In our study, we are showcasing how you can do it with a very small network," Caetano-Anollés explains.

The methods developed by Caetano-Anollés and his team now have the potential to explain how change is capable of structuring systems as varied as the internet, social networks, or the collective of all proteins in an organism.

###

The article, "The early history and emergence of molecular functions and modular scale-free network behavior," is published in Scientific Reports. M. Fayez Aziz and Kelsey Caetano-Anollés, also from the University of Illinois, co-authored the report. Full text of the article can be found at: http://www.nature.com/articles/srep25058.

Media Contact

Lauren Quinn
ldquinn@illinois.edu
217-300-2435

 @uignome

http://aces.illinois.edu/ 

Lauren Quinn | EurekAlert!

Further reports about: Agricultural protein structure protein structures proteins

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>