Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Discover How the Songbird's Brain Controls Timing During Singing

A team of scientists has observed the activity of nerve cells in a songbird's brain as it is singing a particular song.

Dezhe Jin, an assistant professor in the Department of Physics at Penn State University and one of the study's authors, explained that understanding how birds string together sets of syllables — or notes in a song — may provide some insight into how the human brain learns language and produces speech. The research will be published in the journal Nature and is available online now.

"Unlike dogs and cats, whose vocalizations are innate and unlearned, songbirds learn a song in much the same way as humans learn a language — through cultural transmission," Jin said. "So we decided to study exactly what is going on — at the level of brain cells — in a songbird called the zebra finch." Jin explained that both humans and zebra finches arrange sets of learned syllables to communicate. This arrangement of syllables is known as syntax. Jin said that, although finch syntax is much less complicated than human syntax, finch syntax can still provide a model for human speech.

Jin described the area of the brain responsible for a zebra finch's song production as a clump of neurons, which, if absent, renders the bird incapable of singing. To determine exactly how this clump is involved in syntactic production, Jin and his colleagues used special electrodes to monitor the brain cells in this neuronal clump. The electrodes recorded the pattern of neuronal firings that occurred while the finches were repeating a song. The scientists found that when a zebra finch produces its song, a specific set of neurons in this clump fire at precisely the moment when a particular syllable is being sung. "The result is a kind of domino or cascade effect," Jin said. "We saw that when one syllable was sung, a specific set of neurons in the clump fired, which in turn caused the next set of neurons to fire, and that was associated with the next syllable in the song being sung." Jin explained that the ordered firing of specific sets of neurons can be likened to a musical score. "The sequential bursts of brain-cell activity represent the sequential notes on the same piece of music," he said.

Jin also explained that Darwin's theory of sexual, as opposed to natural, selection could explain the songbird's musical prowess. Sexual selection is the theory that an animal chooses a member of the opposite sex based on some observable feature that signals good health and superior genes. The classic example is the male peacock's elaborate and calorically expensive tail, which attracts the female peahen. In male songbirds, an elaborate tail has been replaced by an elaborate song. "A skilled singer will win the attention of more females, and, as such, he will produce more offspring," Jin explained. "It's not that the song itself varies, just the skill with which it's sung. Imagine different pianists playing the same Chopin piece. What sets one apart from the others is his sense of timing and rhythm. In the zebra finch, we found that the timing precision of singing was controlled by bursting properties of individual neurons.”

Jin and his colleagues believe that the next step in their research will be to perform similar studies in other species of songbirds, including the Bengalese finch. "The zebra finch is a simple model because the bird perfects just one song during its lifetime," Jin explained. "However, other species learn several distinct songs. They have a larger repertoire."

Along with Jin, the study's co-authors include Michael A. Long and Michale S. Fee of the Massachusetts Institute of Technology's McGovern Institute for Brain Research.

Support for this research is provided by the National Science Foundation, the National Institutes of Health, and the Alfred P. Sloan Foundation.

Barbara K. Kennedy | EurekAlert!
Further information:

Further reports about: Brain Songbird brain cell female peahen male peacock's singing zebra finch

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>