Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover How the Songbird's Brain Controls Timing During Singing

09.11.2010
A team of scientists has observed the activity of nerve cells in a songbird's brain as it is singing a particular song.

Dezhe Jin, an assistant professor in the Department of Physics at Penn State University and one of the study's authors, explained that understanding how birds string together sets of syllables — or notes in a song — may provide some insight into how the human brain learns language and produces speech. The research will be published in the journal Nature and is available online now.

"Unlike dogs and cats, whose vocalizations are innate and unlearned, songbirds learn a song in much the same way as humans learn a language — through cultural transmission," Jin said. "So we decided to study exactly what is going on — at the level of brain cells — in a songbird called the zebra finch." Jin explained that both humans and zebra finches arrange sets of learned syllables to communicate. This arrangement of syllables is known as syntax. Jin said that, although finch syntax is much less complicated than human syntax, finch syntax can still provide a model for human speech.

Jin described the area of the brain responsible for a zebra finch's song production as a clump of neurons, which, if absent, renders the bird incapable of singing. To determine exactly how this clump is involved in syntactic production, Jin and his colleagues used special electrodes to monitor the brain cells in this neuronal clump. The electrodes recorded the pattern of neuronal firings that occurred while the finches were repeating a song. The scientists found that when a zebra finch produces its song, a specific set of neurons in this clump fire at precisely the moment when a particular syllable is being sung. "The result is a kind of domino or cascade effect," Jin said. "We saw that when one syllable was sung, a specific set of neurons in the clump fired, which in turn caused the next set of neurons to fire, and that was associated with the next syllable in the song being sung." Jin explained that the ordered firing of specific sets of neurons can be likened to a musical score. "The sequential bursts of brain-cell activity represent the sequential notes on the same piece of music," he said.

Jin also explained that Darwin's theory of sexual, as opposed to natural, selection could explain the songbird's musical prowess. Sexual selection is the theory that an animal chooses a member of the opposite sex based on some observable feature that signals good health and superior genes. The classic example is the male peacock's elaborate and calorically expensive tail, which attracts the female peahen. In male songbirds, an elaborate tail has been replaced by an elaborate song. "A skilled singer will win the attention of more females, and, as such, he will produce more offspring," Jin explained. "It's not that the song itself varies, just the skill with which it's sung. Imagine different pianists playing the same Chopin piece. What sets one apart from the others is his sense of timing and rhythm. In the zebra finch, we found that the timing precision of singing was controlled by bursting properties of individual neurons.”

Jin and his colleagues believe that the next step in their research will be to perform similar studies in other species of songbirds, including the Bengalese finch. "The zebra finch is a simple model because the bird perfects just one song during its lifetime," Jin explained. "However, other species learn several distinct songs. They have a larger repertoire."

Along with Jin, the study's co-authors include Michael A. Long and Michale S. Fee of the Massachusetts Institute of Technology's McGovern Institute for Brain Research.

Support for this research is provided by the National Science Foundation, the National Institutes of Health, and the Alfred P. Sloan Foundation.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu
http://www.science.psu.edu/news-and-events/2010-news/Jin11-2010

Further reports about: Brain Songbird brain cell female peahen male peacock's singing zebra finch

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>