Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover how to send insects off the scent of crops

29.09.2009
Biotechnology and Biological Sciences Research Council (BBSRC)-funded research, published this week in Chemical Communication, describes how scientists have discovered molecules that could confuse insects’ ability to detect plants by interfering with their sense of smell. This could reduce damage to crops by insect pests and contribute to food security.

Lead researcher Dr Antony Hooper of Rothamsted Research, an institute of BBSRC said: “One way in which insects find each other and their hosts is by smell, or more accurately: the detection of chemical signals – pheromones, for example. Insects smell chemicals with their antennae; the chemical actually gets into the antennae of the insect and then attaches to a protein called an odorant-binding protein, or OBP. This then leads to the insect changing its behaviour in some way in response to the smell, for example, flying towards a plant or congregating with other insects.”

Studying an OBP found in the silkworm moth Bombyx mori, Dr Hooper and his team were able to look at how the OBP and a relevant pheromone interact. They also tested the interaction between OBP and other molecules that are similar to, but not the same as, the pheromone.

Dr Hooper continued: “As well as learning about the nature of this interaction we’ve actually found that there are other compounds that bind to the OBP much more strongly than the pheromone. We could potentially apply these compounds, or similar ones, in some way to block the insects’ ability to detect chemical signals – the smell would be overwhelmed by the one we introduce. We’d expect the insects to be less likely to orientate themselves towards the crop plants, or find mates in this case, and therefore could reduce the damage.

“There is a lot of work to do from this point. We want to test this idea with important crop pests – we’ll probably start with aphids because they are a serious pest and we have some idea of what the aphid OBPs are like from the genome sequence. We’d also hope to apply our knowledge to insects such as tsetse flies and mosquitoes that carry human diseases. And ultimately we’ll look at developing ways to design suitable compounds to control these pests.”

Professor Douglas Kell, BBSRC Chief Executive said: “Around a quarter of crops are lost to pests and diseases and so if we are to have enough food in the future it is not just a matter of increasing gross yield. To secure our future food supply we must look for new and innovative ways to prevent and control pests and diseases. This is an interesting finding that could be applied across a number of important insect pests and may have far reaching implications for preventing human disease as well.”

About BBSRC
The Biotechnology and Biological Sciences Research Council (BBSRC) is the UK funding agency for research in the life sciences. Sponsored by Government, BBSRC annually invests around £450 million in a wide range of research that makes a significant contribution to the quality of life for UK citizens and supports a number of important industrial stakeholders including the agriculture, food, chemical, healthcare and pharmaceutical sectors. BBSRC carries out its mission by funding internationally competitive research, providing training in the biosciences, fostering opportunities for knowledge transfer and innovation and promoting interaction with the public and other stakeholders on issues of scientific interest in universities, centres and institutes.

The Babraham Institute, Institute for Animal Health, Institute of Food Research, John Innes Centre and Rothamsted Research are Institutes of BBSRC. The Institutes conduct long-term, mission-oriented research using specialist facilities. They have strong interactions with industry, Government departments and other end-users of their research.

Nancy Mendoza | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>