Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover the proteins that control development of varicose veins

30.09.2011
New research in the FASEB Journal suggests that prevention of these proteins with drugs could stall progression of varicose veins and lessen need for surgery and related complications

Bethesda, MD—A new discovery published in the October 2011 print issue of The FASEB Journal (http://www.fasebj.org) explains for the first time what kicks off the process that causes varicose veins. In the article, researchers from Germany describe a single protein that binds to DNA to control gene function (called "transcription factor AP-1") and the subsequent production of a newly discovered set of proteins that significantly affect the development of varicose veins.

"We very much hope that our findings spur further studies focusing on the mechanisms underlying this widespread and precarious but still largely neglected venous disease," said Thomas Korff, Ph.D., study author from the Institute of Physiology and Pathophysiology at the University of Heidelberg in Heidelberg, Germany. "In the long run, such approaches will result in the development of a drug therapy that improves the quality of life for all people suffering from varicose veins."

To make this discovery, Korff and colleagues increased the blood pressure in a single vein of the ears of white mice, and followed the resulting changes in the size and architecture of the adjacent veins for several days. These changes were further analyzed in the abundance and activity of specific proteins in the veins connected to the one with increased blood pressure, and results were compared to those obtained from human varicose veins. By inhibiting the transcription factor AP-1 in the mouse ear model, synthesis of proteins associated with varicose remodeling and the proliferation of blood vessel smooth muscle cells were significantly reduced, and the varicose remodeling process was virtually abolished. AP-1 was inhibited by decoy oligonucleotides (decoy ODN), a well-studied class of nucleic acid-based drugs.

"Most people know varicose veins as an unsightly reminder of aging," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal, "but for some, varicose veins cause significant pain that affects the quality and in some cases, length of life. While surgery may be beneficial in some cases, it's not the ideal solution. This research really opens the doors for an entirely new approach to treatment and prevention."

Receive monthly highlights from The FASEB Journal by e-mail. Sign up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal (http://www.fasebj.org) is published by the Federation of the American Societies for Experimental Biology (FASEB) and celebrates its 25th anniversary in 2011. Over the past quarter century, the journal has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century and is the most cited biology journal worldwide according to the Institute for Scientific Information.

FASEB comprises 24 societies with more than 100,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB enhances the ability of scientists and engineers to improve—through their research—the health, well-being and productivity of all people. FASEB's mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Anja Feldner, Hannes Otto, Stephan Rewerk, Markus Hecker, and Thomas Korff. Experimental hypertension triggers varicosis-like maladaptive venous remodeling through activator protein-1. FASEB J. 2011 25:3613-3621; doi: 10.1096/fj.11-185975 ; http://www.fasebj.org/content/25/10/3613.abstract

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>