Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover How Protein Trips Up Germs

19.02.2010
If bad bacteria lurk in your system, chances are they will bump into the immune system’s protective cells whose job is gobbling germs. The catch is that these do-gooders, known as macrophages, ingest and destroy only those infectious invaders that they can securely hook and reel in.

Now, Hopkins scientists have shown that a healthy immune response depends on a protein called TRPV2 (pronounced trip-vee-two) which, they discovered, is the means by which macrophages capitalize on brief and accidental encounters with nasty bugs.

Reporting in Nature Immunology in the January 31 online edition, the team proves that TRPV2 is necessary not only for macrophages to get a good grip on disease-causing bacteria, but also as the first line of defense, rallying the rest of the immune system to dispose of the most slippery and sizable germs.

“Imagine a fisherman who gets a bite, but is not strong enough to reel it in alone, so he sounds an alarm that brings others in to help,” analogizes Michael Caterina, M.D., Ph.D., associate professor of biological chemistry, Johns Hopkins University School of Medicine. “That’s similar to what’s happening here: A macrophage receptor will bind to a giant germ it encounters, but not tightly enough to secure it. So TRPV2 on the macrophage acts as an alarm: It tells the other receptors around the macrophage to consolidate in that one place to enhance the local binding of that bacteria.”

Ten years ago, Caterina was the first to clone TRPV2 along with a related protein, called TRPV1, which was found to be involved in sensing painful heat. His lab first looked at the nervous system in an attempt to ferret out TRPV2’s function, but changed tack when it became apparent that this protein is abundant in the immune system, particularly in macrophages.

To learn what role TRPV2 might play in fighting infection, Tiffany Link, a graduate student in Cellular and Molecular Medicine, harvested macrophages from the bellies of two sets of mice: a “wild type” control group, and a group that had been genetically engineered to lack TRPV2. She grew the normal immune cells and the engineered mutant cells in separate dishes, and then added latex beads that were coated with antibody molecules. The normal immune cells efficiently gobbled the beads, while the mutant cells lacking TRPV2 couldn’t ingest nearly as well, indicating that TRPV2 was important in proper functioning of macrophages.

Because the defective macrophages weren’t completely inept in their germ-eating job, Caterina suspects that other proteins like TRPV2 are likely players, too, but TRPV2 clearly makes the germ-clearing process more efficient.

Link, who investigated each separate step macrophages take to successfully consume bacteria, found that in the mutant cells lacking TRPV2, the problem existed from the very moment of initial contact with a germ.

“Without TRPV2, macrophages don’t bind bacteria and engulf them right away,” Link says, “and as a result, the rest of the immune system doesn’t get involved and clear the infection,” Link says.

In order to find out if a mouse missing TRPV2 would be more susceptible to bacterial infection, Link injected live bacteria into the bellies of wild-type mice and those lacking TRPV2. The mice lacking TRPV2 died within four days of infection — significantly sooner than the wild types which died within eight days after infection.

Citing the fact that TRPV2 is important not only in helping macrophages to bind to germs, but also in clearing bacterial infection, Caterina noted its potential as a useful drug target. And in cases of autoimmune diseases — arthritis, lupus and asthma, for example — it’s possible that the inhibition of TRPV2 might help pull back an overactive immune system.

“We think there are going to be a lot of implications beyond just prevention of infectious diseases where this research about TRPV2’s function in macrophages might be relevant,” Link adds. “Macrophages consume cholesterol and contribute to hardening of the arteries. They also clear out debris when nerves are injured so that new nerves can grow through that area.”

The research was funded by the National Institutes of Health.

In addition to Caterina and Link, authors of the paper are Una Park, Becky M. Vonakis, Daniel M. Raben, Mark J. Soloski, all of Johns Hopkins.

On the Web:
http://neuroscience.jhu.edu/MichaelCaterina.php
http://www.nature.com/ni/index.html
Related Video:
Johns Hopkins scientist Michael Caterina tells about the history of the TRP channel.

http://www.youtube.com/user/JohnsHopkinsMedicine#p/u/0/GGL-QSVUW3s

Johns Hopkins researcher Tiffany Link defines TRPV2 as an ion channel.
http://www.youtube.com/user/JohnsHopkinsMedicine#p/u/0/aR0meSN23lo

Maryalice Yakutchik | Newswise Science News
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>