Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover Protein Discover Protein that Shuttles RNA into Mitochrondria

09.08.2010
Researchers at UCLA’s Jonsson Comprehensive Cancer Center and the departments of Chemistry and Biochemistry and Pathology and Laboratory Medicine have uncovered a role for an essential cell protein in shuttling RNA into the mitochondria, the energy-producing “power plant” of the cell.

The import of nucleus-encoded small RNAs into mitochondria is essential for the replication, transcription and translation of the mitochondrial genome, but the mechanisms that deliver RNA into mitochondria remain poorly understood.

In the current study, UCLA scientists show a new role for a protein called polynucleotide phosphorylase (PNPASE) in regulating the import of RNA into mitochondria. Reducing the expression of PNPASE decreased RNA import, which impaired the processing of mitochondrial genome-encoded RNAs. Reduced RNA processing inhibited the translation of proteins required to maintain the electron transport chain that handles oxygen to produce energy in the form of adenosine triphosphate, the energy currency of a cell. With reduced PNPASE, unprocessed mitochondrial RNAs accumulated, protein translation was inhibited and energy production was compromised, leading to stalled cell growth.

The study appears Aug. 5, 2010, in the peer-reviewed journal Cell.

“This discovery tells us that PNPASE regulates the energy producing function of mitochondria by mediating cytoplasmic RNA import,” said Dr. Michael Teitell, a professor of pathology and laboratory medicine, a Jonsson Cancer Center researcher and co-senior author of the study. “The study yields new insight for how cells function at a very fundamental level. This information provides a potential new pathway to control mitochondrial energy production and possibly impact the growth of cells, including certain types of cancer cells.”

Mitochondria are described as cellular power plants because they generate most of the energy supply of the cell. In addition to supplying energy, mitochondria also are involved in a broad range of other cellular processes, such as signaling, differentiation, death, control of the cell cycle and growth.

The study could have implications for studying and treating certain cancers, which rely on cellular energy to grow and spread, as well as mitochondrial disorders such as neuromuscular diseases. The study could also result in new ways to think about attacking neurodegenerative disorders, such as Parkinson and Alzheimer diseases, which have recently been linked to the function of mitochondria.

“When we’re talking about looking for ways to cure cancer, we fundamentally need to understand what makes cells grow and die and the mitochondrion is right at the heart of these issues,” said Carla Koehler, a professor of chemistry and biochemistry, Jonsson Cancer Center researcher and co-senior author of the study. “This new and novel pathway for transporting RNA into the mitochondria is shedding new light on the evolving role and importance of mitochondria function in normal physiology and a wide variety of diseases. If we can understand how this pathway functions in healthy cells we could potentially uncover defects that help in transforming normal cells into cancer cells.”

PNPASE was identified in 2004 by Teitell and his team as they attempted to find proteins that interact with TCL1, a human lymphoma-promoting cancer gene that has been used to generate genetic models of lymphocyte cancer. Mass spectrometry uncovered PNPASE, which had a signature sequence that suggested that it trafficked into and localized within the mitochondria of cells.

Once localized, Teitell, Koehler and post-doctoral fellow Geng Wang turned their attention to the function of PNPASE, which generated the unexpected results reported in this study. Prior to their discovery, it was not known what pathway was used to get RNA into the mitochondria. PNPASE mediates the movement of RNA from the cell cytoplasm, the area of the cell enclosed by the cell membrane, into the matrix of mitochondria, where the mitochondrial genome is located. The protein acts as receptor and binds to cytoplasmic RNAs that have a particular stem-loop signature sequence, mediating import, Teitell said.

Without this RNA import, the cell lacks the machinery to assemble the mitochondria’s energy source, Koehler said.

“The cell would lose most of its ability to make energy,” she said. “It would be crippled. Mitochondria are fantastically complex and our study reveals another cellular pathway in which these tiny but important powerhouses participate in essential cell activities, such as the generation of energy essential for life.”

The study was funded by the National Institutes of Health, the California Institute for Regenerative Medicine, the American Heart Association, the Leukemia & Lymphoma Society and a NIH Nanomedicine Roadmap Grant.

UCLA's Jonsson Comprehensive Cancer Center has more than 240 researchers and clinicians engaged in disease research, prevention, detection, control, treatment and education. One of the nation's largest comprehensive cancer centers, the Jonsson Cancer Center is dedicated to promoting research and translating basic science into leading-edge clinical studies. In July 2010, the Jonsson Cancer Center was named among the top 10 cancer centers nationwide by U.S. News & World Report, a ranking it has held for 10 of the last 11 years. For more information on the Jonsson Cancer Center, visit our website at http://www.cancer.ucla.edu.

Kim Irwin | Newswise Science News
Further information:
http://www.mednet.ucla.edu
http://www.cancer.ucla.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

New material for splitting water

19.06.2018 | Physics and Astronomy

Cementless fly ash binder makes concrete 'green'

19.06.2018 | Materials Sciences

Overdosing on Calcium

19.06.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>