Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover pain receptor on T-cells

06.10.2014

Researchers at University of California, San Diego School of Medicine have discovered that T-cells – a type of white blood cell that learns to recognize and attack microbial pathogens – are activated by a pain receptor.

The study, reported online Oct. 5 in Nature Immunology, shows that the receptor helps regulate intestinal inflammation in mice and that its activity can be manipulated, offering a potential new target for treating certain autoimmune disorders, such as Crohn's disease and possibly multiple sclerosis.


An inflammatory response and damage to the intenstinal wall (left) could be prevented by injecting TRPV1-deficient T-cells (right).

Credit: Nature Immunulogy, Bertin et al.

"We have a new way to regulate T-cell activation and potentially better control immune-mediated diseases," said senior author Eyal Raz, MD, professor of medicine.

The receptor, called a TRPV1 channel, has a well-recognized role on nerve cells that help regulate body temperature and alert the brain to heat and pain. It is also sometimes called the capsaicin receptor because of its role in producing the sensation of heat from chili peppers.

The study is the first to show that these channels are also present on T-cells, where they are involved in gating the influx of calcium ions into cells – a process that is required for T-cell activation.

"Our study breaks current dogma in which certain ion channels called CRAC are the only players involved in calcium entry required for T-cell function," said lead author Samuel Bertin, a postdoctoral researcher in the Raz laboratory. "Understanding the physical structures that enable calcium influx is critical to understanding the body's immune response."

T-cells are targeted by the HIV virus and their destruction is why people with AIDS have compromised immune function. Certain vaccines also exploit T-cells by harnessing their ability to recognize antigens and trigger the production of antibodies, conferring disease resistance. Allergies, in contrast, may occur when T-cells recognize harmless substances as pathogenic.

TRPV1 channels appear to offer a way to manipulate T-cell response as needed for health. Specifically, in in vitro experiments researchers showed that T-cell inflammatory response could be reduced by knocking down the gene that encodes for the protein that comprises the TRPV1 channel. Overexpression of this gene was shown to lead to a surge in T-cell activation, which in human health may contribute to autoimmune diseases. T-cells also responded to pharmaceutical agents that block or activate the TRPV1 channel.

In experiments with mice models, researchers were able to reduce colitis with a TRPV1-blocker, initially developed as a new painkiller. One of the promising discoveries is that colitis in mice could be treated with much lower doses than what is needed to dull pain. "This suggests we could potentially treat some autoimmune diseases with doses that would not affect people's protective pain response," Raz said.

###

Co-authors include Petrus Rudolf de Jong, Jihyung Lee, Keith To, Lior Abramson, Timothy Yu, Tiffany Han, Ranim Touma, Xiangli Li, José M. González-Navajas, Scott Herdman, Maripat Corr, Hui Dong, and Alessandra Franco, UC San Diego; Yukari Aoki-Nonaka, UC San Diego and Niigata University Graduate School of Medical and Dental Sciences, Japan; Lilian L. Nohara, Hongjian Xu, Shawna R. Stanwood and Wilfred A. Jefferies, University of British Columbia; Sonal Srikanth and Yousang Gwack, UCLA; and Guo Fu, The Scripps Research Institute.

This study was funded, in part, by National Institutes of Health (U01 AI095623, P01 DK35108 and P30 NS047101), The Broad Foundation, Crohn's and Colitis Foundation of America, Canadian Institutes of Health Research, Fulbright Association, Philippe Foundation Inc. and Japan Society for the Promotion of Science.

Scott LaFee | Eurek Alert!

Further reports about: T-cell T-cell activation TRPV1 autoimmune autoimmune diseases diseases experiments heat pain receptor

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>