Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover molecular 'switch' that contributes to cellular aging process

01.12.2010
Discovery could one day lead to new treatments for metabolic diseases

A team of Harvard School of Public Health (HSPH) scientists report finding a molecular "switch" that can "turn off" some cellular processes that are protective against aging and metabolic diseases.

While more research is needed, the findings may open doors for new drug treatments to halt or slow development of metabolic diseases like type 2 diabetes or heart disease. The research findings appear in the December 1, 2010 issue of Cell Metabolism.

Scientists want to better understand why some people – often those who are older, overweight, or obese – develop metabolic syndrome, a condition characterized by a group of risk factors, including high blood glucose, high cholesterol, insulin resistance, fatty liver, and increased abdominal fat. This condition increases the risk of heart disease, type 2 diabetes, and other diseases, including cancer.

Using genetically altered mouse models, senior author Chih-Hao Lee, assistant professor of genetics and complex diseases at HSPH, first author Shannon Reilly, an HSPH graduate student, and their colleagues focused on the role of the protein SMRT (silencing mediator of retinoid and thyroid hormone receptors) in the aging process. They found aged cells accumulate more SMRT and wanted to see if SMRT increases the damaging effects of oxidative stress on mitochondria, the cell component that converts food and oxygen into energy and powers metabolic activities. Oxidative stress is a cellular process that damages DNA, protein, and other cell functions and can lead to age-related diseases such as type 2 diabetes, Alzheimer's, Parkinson's, and atherosclerosis.

In laboratory experiments, Reilly, Lee, and colleagues found that in older animals SMRT acts like a "switch," turning off the protective cellular activities of proteins known as peroxisome proliferator-activated receptors (PPARs). PPARs help regulate genes that promote fat burning to maintain lipid (blood fat) balance and reduce oxidative stress. The researchers were able to reduce the negative effects of oxidative stress by giving antioxidants or drugs known to turn the protective activities of PPARs back on.

The scientists knew that oxidative damage causes the body to age. What they did not know is why aged cells have more oxidative damage. "The significance of our study is that we show SMRT facilitates this process," Lee said. "In other words, the normal metabolic homeostasis is maintained, in part, by PPARs. SMRT acts as a metabolic switch to turn off PPAR activities when the cells age."

PPAR drugs have been used to increase insulin sensitivity and lower blood lipid levels. "Our study shows PPARs might also be used to boost the body's ability to handle oxidative stress," Lee said.

"With what we have learned, we believe SMRT is one of the key players that causes age-dependent decline in mitochondrial function by blocking PPAR activity, and we've found a way to boost the body's ability to better handle metabolic and oxidative stress," Lee said. "This finding is significant since increased oxidative stress, coupled with reduced metabolic function, contributes to the aging process and the development of age-related metabolic diseases."

In collaboration with epidemiologists at HSPH, the team found genetic variations in the human SMRT gene that are associated with risk of type 2 diabetes. "Through this study we were able to validate that our findings in the animal model apply to human diseases," Lee said.

Support for the study was from the National Institutes of Health as well as from the American Diabetes Association and American Heart Association. Lee received a Career Incubator Fund from HSPH that also supported the work.

"Nuclear Receptor Corepressor SMRT Regulates Mitochondrial Oxidative Metabolism and Mediates Aging-Related Metabolic Deterioration," Shannon M. Reilly, Prerna Bhargava, Sihao Liu, Matthew R. Gangl, Cem Gorgun, Russell R. Nofsinger, Ronald M. Evans, Lu Qi, Frank Hu, Chih-Hao Lee. Cell Metabolism, December 2010.

Visit the HSPH website for the latest news, press releases and multimedia offerings.

Harvard School of Public Health (http://www.hsph.harvard.edu) is dedicated to advancing the public's health through learning, discovery, and communication. More than 400 faculty members are engaged in teaching and training the 1,000-plus student body in a broad spectrum of disciplines crucial to the health and well being of individuals and populations around the world. Programs and projects range from the molecular biology of AIDS vaccines to the epidemiology of cancer; from risk analysis to violence prevention; from maternal and children's health to quality of care measurement; from health care management to international health and human rights. For more information on the school visit: http://www.hsph.harvard.edu

HSPH on Twitter: http://twitter.com/HarvardHSPH
HSPH on Facebook: http://www.facebook.com/harvardpublichealth
HSPH on You Tube: http://www.youtube.com/user/HarvardPublicHealth
HSPH home page: http://www.hsph.harvard.edu

Marjorie Dwyer | EurekAlert!
Further information:
http://www.hsph.harvard.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>