Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover new method of gene identification

12.11.2012
Findings will help our genetic understanding of dangerous new viruses

Scientists studying the genes and proteins of human cells infected with a common cold virus have identified a new gene identification technique that could increase the genetic information we hold on animals by around 70 to 80 per cent. The findings, published in Nature Methods, could revolutionise our understanding of animal genetics and disease, and improve our knowledge of dangerous viruses such as SARS that jump the species barrier from animals to humans.

Modern advances in genome sequencing — the process of determining the genetic information and variation controlling everything from our eye colour to our vulnerability to certain diseases — has enabled scientists to uncover the genetic codes of a wide range of animals, plants and insects.

Until now, correctly identifying the genes and proteins hidden inside the genetic material of a newly sequenced species has been a monumental undertaking requiring the careful observation and cataloguing of vast amounts of data about the thousands of individual genes that make up any given animal, plant or insect.

Dr David Matthews, the study's lead author and a Senior Lecturer in Virology at the University of Bristol's School of Cellular and Molecular Medicine, said: "Gene identification is mainly led by computer programmes which search the genome for regions that look like genes already identified in other animals or humans. However, this type of analysis is not always effective."

The Bristol team has now discovered a more effective way of detecting the genetic information present in animals, plants and insects using cutting-edge analysis tools to directly observe the genes and all the proteins they make.

To prove their technique worked, the researchers conducted an experiment to see how good their process was at gene discovery. Human cells were infected with a well-understood common cold bug to mimic a newly discovered virus. These infected cells were then analysed using the technique as if they were cells from a newly sequenced organism infected with a newly discovered virus.

The resulting list of "discovered" genes and proteins, when compared to the genetic information already known about humans and cold virus, proved extremely successful and demonstrated the power of this method.

A similar analysis of hamster cells provided directly observed evidence for the existence of thousands of genes and proteins in hamsters in a single relatively inexpensive experiment. Direct evidence for the existence of almost all of theses genes and proteins in hamsters is not available in the 'official' lists of hamster genes and proteins.

Dr Matthews added: "These findings open up the potential to take powerful analysis tools currently used to study human diseases and apply them to study any animal, insect or even plants – something previously either very challenging or simply not possible. This technique will also make it easier and much more efficient for scientists to study anything from farm animals and their diseases to insect pests that damage crops.

"In recent years, a number of dangerous new viruses have been transmitted from animals to humans including Influenza, SARS, Ebola, Hendra and Nipah viruses. Earlier this year three people became seriously ill and two of them died when they contracted a new SARS-like virus in the Middle East which is thought to have come directly from bats.

"Why bats harbour these viruses with limited ill effect is a mystery as the genetic make-up of these creatures is poorly understood. We are starting to apply our technique to laboratory grown bat cells to analyse the genetic and protein content of bats to gain more insight into their genetics and to understand how they are able to apparently co-exist with these viruses which all too often prove fatal in humans."

Caroline Clancy | EurekAlert!
Further information:
http://www.bristol.ac.uk

Further reports about: SARS genetic code genetic information genome sequencing human cell proteins

More articles from Life Sciences:

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

nachricht German scientists question study about plastic-eating caterpillars
15.09.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

Robust and functional – surface finishing by suspension spraying

19.09.2017 | Materials Sciences

The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships

19.09.2017 | Earth Sciences

Digging sensors out of an efficiency hole

19.09.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>