Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover Mechanism to Make Existing Antibiotics More Effective at Lower Doses

14.09.2009
A new study published in the September 11, 2009 issue of Science by researchers at the NYU School of Medicine reveals a conceptually novel mechanism that plays an important role in making human pathogens like Staphylococcus aureus and Bacillus anthracis resistant to numerous antibiotics.

The study led by Evgeny A. Nudler, PhD, The Julie Wilson Anderson Professor of Biochemistry at NYU Langone Medical Center, provides evidence that Nitric Oxide, or NO, is able to alleviate the oxidative stress in bacteria caused by many antibiotics and also helps to neutralize many antibacterial compounds.

Eliminating this NO-mediated bacterial defense renders existing antibiotics more potent at lower, less toxic, doses. With infectious diseases the major cause of death worldwide, the study paves the way for new ways of combating bacteria that have become antibiotic resistant.

NO is a small molecule composed of one atom of oxygen and one of nitrogen. It was known as a toxic gas and air pollutant until 1987, when it was first shown to play a physiological role in mammals, for which a Nobel Prize was later awarded. NO has since been found to take part in an extraordinary range of activities including learning and memory, blood pressure regulation, penile erection, digestion and the fighting of infection and cancer. A few years ago, the Nudler’s group from NYU demonstrated that bacteria mobilize NO to defend against the oxidative stress. The new study from the same group supports the radical idea that many antibiotics cause the oxidative stress in bacteria, often resulting in their death, whereas NO counters this effect. This work suggests scientists could use commercially available inhibitors of NO-synthase, an enzyme producing NO in bacteria and humans, to make antibiotic resistant bacteria like MRSA and ANTHRAX more sensitive to available drugs during acute infection.

“Developing new medications to fight antibiotic resistant bacteria like MRSA is a huge hurdle, associated with great cost and countless safety issues,” says Nudler. “Here, we have a short cut, where we don’t have to invent new antibiotics. Instead, we can enhance the activity of well established ones, making them more effective at lower doses.”

“We are very excited about the potential impact of this research in terms of continuing to push the boundaries of research in the area of infectious diseases,” said Vivian S. Lee, MD, PhD, MBA, vice dean for science, senior vice president and chief scientific officer of NYU Langone Medical Center. “With the emergence of drug resistant bacteria, it’s imperative that researchers strive to find conceptually new approaches to fight these pathogens,”

The study by Nudler and his colleagues was funded by a 2006 Pioneer Award from the National Institutes of Health in Bethesda, Maryland. The Pioneer Award, a $2.5 million grant over five years, is designed to support individual scientists of exceptional creativity who propose pioneering and possibly transforming approaches to major challenges in biomedical and behavioral research.

Co-authors of the study include Drs Ivan Gusarov and Konstantin Shatalin of the department of biochemistry at NYU School of Medicine in New York.

About NYU Langone Medical Center
Located in the heart of New York City, NYU Langone Medical Center is one of the nation's premier centers of excellence in health care, biomedical research, and medical education. For over 168 years, NYU physicians and researchers have made countless contributions to the practice and science of health care. Today the Medical Center consists of NYU School of Medicine, including the Smilow Research Center, the Skirball Institute of Biomolecular Medicine, and the Sackler Institute of Graduate Biomedical Sciences; the three hospitals of NYU Hospitals Center, Tisch Hospital, a 726-bed acute-care general hospital, Rusk Institute of Rehabilitation Medicine, the first and largest facility of its kind, and NYU Hospital for Joint Diseases, a leader in musculoskeletal care; and such major programs as the NYU Cancer Institute, the NYU Child Study Center, and the Hassenfeld Children's Center for Cancer and Blood Disorders.

Dorie Klissas | Newswise Science News
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>