Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover Mechanism to Make Existing Antibiotics More Effective at Lower Doses

14.09.2009
A new study published in the September 11, 2009 issue of Science by researchers at the NYU School of Medicine reveals a conceptually novel mechanism that plays an important role in making human pathogens like Staphylococcus aureus and Bacillus anthracis resistant to numerous antibiotics.

The study led by Evgeny A. Nudler, PhD, The Julie Wilson Anderson Professor of Biochemistry at NYU Langone Medical Center, provides evidence that Nitric Oxide, or NO, is able to alleviate the oxidative stress in bacteria caused by many antibiotics and also helps to neutralize many antibacterial compounds.

Eliminating this NO-mediated bacterial defense renders existing antibiotics more potent at lower, less toxic, doses. With infectious diseases the major cause of death worldwide, the study paves the way for new ways of combating bacteria that have become antibiotic resistant.

NO is a small molecule composed of one atom of oxygen and one of nitrogen. It was known as a toxic gas and air pollutant until 1987, when it was first shown to play a physiological role in mammals, for which a Nobel Prize was later awarded. NO has since been found to take part in an extraordinary range of activities including learning and memory, blood pressure regulation, penile erection, digestion and the fighting of infection and cancer. A few years ago, the Nudler’s group from NYU demonstrated that bacteria mobilize NO to defend against the oxidative stress. The new study from the same group supports the radical idea that many antibiotics cause the oxidative stress in bacteria, often resulting in their death, whereas NO counters this effect. This work suggests scientists could use commercially available inhibitors of NO-synthase, an enzyme producing NO in bacteria and humans, to make antibiotic resistant bacteria like MRSA and ANTHRAX more sensitive to available drugs during acute infection.

“Developing new medications to fight antibiotic resistant bacteria like MRSA is a huge hurdle, associated with great cost and countless safety issues,” says Nudler. “Here, we have a short cut, where we don’t have to invent new antibiotics. Instead, we can enhance the activity of well established ones, making them more effective at lower doses.”

“We are very excited about the potential impact of this research in terms of continuing to push the boundaries of research in the area of infectious diseases,” said Vivian S. Lee, MD, PhD, MBA, vice dean for science, senior vice president and chief scientific officer of NYU Langone Medical Center. “With the emergence of drug resistant bacteria, it’s imperative that researchers strive to find conceptually new approaches to fight these pathogens,”

The study by Nudler and his colleagues was funded by a 2006 Pioneer Award from the National Institutes of Health in Bethesda, Maryland. The Pioneer Award, a $2.5 million grant over five years, is designed to support individual scientists of exceptional creativity who propose pioneering and possibly transforming approaches to major challenges in biomedical and behavioral research.

Co-authors of the study include Drs Ivan Gusarov and Konstantin Shatalin of the department of biochemistry at NYU School of Medicine in New York.

About NYU Langone Medical Center
Located in the heart of New York City, NYU Langone Medical Center is one of the nation's premier centers of excellence in health care, biomedical research, and medical education. For over 168 years, NYU physicians and researchers have made countless contributions to the practice and science of health care. Today the Medical Center consists of NYU School of Medicine, including the Smilow Research Center, the Skirball Institute of Biomolecular Medicine, and the Sackler Institute of Graduate Biomedical Sciences; the three hospitals of NYU Hospitals Center, Tisch Hospital, a 726-bed acute-care general hospital, Rusk Institute of Rehabilitation Medicine, the first and largest facility of its kind, and NYU Hospital for Joint Diseases, a leader in musculoskeletal care; and such major programs as the NYU Cancer Institute, the NYU Child Study Center, and the Hassenfeld Children's Center for Cancer and Blood Disorders.

Dorie Klissas | Newswise Science News
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>