Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover How to Map Cell-Signaling Molecules to Their Targets

10.09.2013
University of Montreal, McGill researchers develop new method to link signaling molecules to target regulators of cell division

A team of University of Montreal and McGill University researchers have devised a method to identify how signaling molecules orchestrate the sequential steps in cell division.


Conrad Hall, McGill University

A mitotic spindle hub (the orange and grey hub-and-spoke structure) primed by Cdk-Clb3 signaling (red).

In an article published online today in the Proceedings of the National Academy of Sciences, the scientists explain how they could track the relationship between signaling molecules and their target molecules to establish where, when and how the targets are deployed to perform the many steps necessary to replicate an individual cell’s genome and surrounding structures.

Breakdowns in individual steps in these processes are a hallmark of a number of diseases, including cancers. The method outlined in the PNAS paper could provide a valuable tool to researchers seeking to better understand these processes.

“How living cells divide and how this process is accurately achieved are among the deepest questions scientists have been addressing for decades,” said Dr. Stephen Michnick, co-senior investigator and a University of Montreal biochemistry professor. Co-senior investigator Jackie Vogel, a biology professor at McGill, said, “We know what are the main players in cell division – molecules called cyclins and a common actuator molecule called Cdk1 – but it has proved a vexing problem to figure out precisely how the cyclin-Cdk1 partners deploy target molecules to orchestrate everything that must happen and in precisely the right order to assure accurate cell division.”

The University of Montreal and McGill team worked out a method to identify interactions between cyclin-Cdk1 (cyclin-dependent kinase 1) complexes and their targets in living cells. Cdk1 is a signaling protein that plays a key role in cell division – it has been studied extensively in yeast, because of yeast’s rapid reproduction, and is found in many other living organisms including humans. “It is a simple method that could be performed in any laboratory, unlike existing methods that are much more labor- and skill-intensive,” said Dr. Michnick.

“The method also picks up cyclin-Cdk1 interactions that traditional methods don’t,” added Dr. Vogel. “For instance, we study the assembly of a massive molecular machine called the mitotic spindle, a structure that orchestrates the coordinated separation of two copies of the genome between the two new cells that emerge from division. We’d been chasing, for over a decade, an elusive link between a specific cyclin called Clb3-Cdk1 complex and a spindle target called gamma-tubulin that we thought could be a key step in building mitotic spindles accurately. All evidence pointed to this interaction, including a massive effort I was involved in to map out cellular communication directed to the centrosome, a molecular machine that organizes assembly of the mitotic spindle. So we teamed up with Dr. Michnick to try the new method and out popped the Clb3-Cdk1-gamma tubulin interaction -- just like that.” Now, in collaboration with Paul François, a physics professor at McGill, the researchers have been able to use this information to show that the Clb3-Cdk1-gamma-tubulin interaction controls a massive remodeling of the mitotic spindle.

“The tool that we’ve developed will be available to the scientific community and concerted efforts by many labs may ultimately unlock the mysteries of one of life’s most essential processes,” said Dr. Michnick.

Notes:
The University of Montreal is known officially as Université de Montréal. The research involved in the study “Dissection of Cdk1–cyclin complexes in vivo” was financed by Canadian Institutes of Health Research (CIHR) grants MOP-GMX-192838 and MOP-GMX- 231013 to Dr. Michnick and CIHR grant MOP-123335 and Natural Sciences and Engineering Research Council (Canada) grant RGPIN 262246 to Dr. Vogel. This press release references findings by Keck et al., Science 2011 and Nazarova et al. Molecular Biology of the Cell, 2013.
About the University of Montreal: www.umontreal.ca/english
About McGill University: www.mcgill.ca
About the Department of Biochemistry www.bcm.umontreal.ca
About the Department of Biology http://biology.mcgill.ca
About Dr. Michnick’s research: michnick.bcm.umontreal.ca/Michnicklab
About Dr. Vogel’s research: http://aguada.biol.mcgill.ca
Contact:
Chris Chipello
Media Relations Office
McGill University
Tel. 514-398-4201 | christopher.chipello@mcgill.ca
William Raillant-Clark
International Press Attaché
University of Montreal (officially Université de Montréal)
Tel: 514-343-7593 | w.raillant-clark@umontreal.ca | @uMontreal_News
http://www.mcgill.ca/newsroom/
http://twitter.com/McGillU

Chris Chipello | Newswise
Further information:
http://www.mcgill.ca

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>