Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover how leukemia cells exploit 'enhancer' DNA elements to cause lethal disease

27.11.2013
Discovery also reveals how a drug, now in multiple human trials, halts production of Myc protein and stops progression of AML

A team of researchers at Cold Spring Harbor Laboratory (CSHL) has identified a leukemia-specific stretch of DNA called an enhancer element that enables cancerous blood cells to proliferate in Acute Myeloid Leukemia (AML), a devastating cancer that is incurable in 70% of patients.


Acute myeloid leukemia cells require the Myc oncogene to grow, shown in the panel on the left. On the right, SWI/SNF has been removed from the cells. The enhancer element no longer activates Myc and the leukemia cells change into more normal cells in shape and function.

Credit: C. Vakoc, Cold Spring Harbor Laboratory

Just as important, the findings offer a mechanistic insight into how a new class of promising drugs – one version of which is already in human clinical trials – appears to halt the growth of cancer cells so effectively.

The research, appearing today in Genes & Development and led by CSHL Assistant Professor Chris Vakoc, centers on the way a cancer-promoting gene is controlled. When this oncogene, called Myc, is robustly expressed, it instructs cells to manufacture proteins that contribute to the uncontrolled growth that is cancer's hallmark. The Myc oncogene is also implicated in many other cancer types, adding to the significance of the new finding.

Vakoc's team discovered an enhancer element that controls the Myc oncogene specifically in leukemia cells. Unlike many other DNA-based gene regulators, this string of DNA "letters" is nowhere near the Myc gene it regulates. In fact, it's far away, and in order to affect the Myc gene, some other element – unknown, prior to these experiments -- has to bring the enhancer in proximity to the gene. In their experiments, the team found a protein complex, called SWI/SNF, that links the enhancer element and the Myc gene it activates.

"The enhancer elements we discovered are 1.7 million DNA bases away from their target gene, Myc," says Vakoc. "But we were able to show that this long stretch of the genome is bent and looped in the cell nucleus in such a way that the remote enhancer segment literally touches the distant segment harboring the cancer gene. Our results suggest that this regulatory conformation fuels the uncontrolled growth of cancer cells and may explain why the Myc gene is so uniquely sensitive to targeting with a new class of drugs being developed for leukemia." The Vakoc lab in 2011 discovered a novel therapeutic strategy to shut off Myc in cancer, an approach now being tested in phase 1 clinical trials.

Vakoc and Junwei Shi, a graduate student in the Vakoc lab and lead author on the new paper, identified the SWI/SNF protein complex in an experiment that searched for proteins that stop AML disease progression while still allowing healthy cells to grow normally. In collaboration with Professor Richard Young from the Whitehead Institute, they worked to determine where in the genome SWI/SNF attaches to DNA. That's when they discovered its binding to the enhancer element located 1.7 million bases away from the Myc gene.

Intriguingly, this enhancer occupies a spot in the genome that Vakoc's team found was most often abnormally duplicated in AML cells. "We usually look for duplicated genes in cancer," Vakoc says. "But this is the first time we've ever seen DNA for an enhancer, rather than for a gene, being a common duplication in a cancer type."

In mechanical terms, how does SWI/SNF exert control over Myc? Vakoc collaborated with CSHL Professor David Spector to determine how the DNA at the Myc gene is folded and organized within the nucleus. Surprisingly, when the SWI/SNF complex binds to the enhancer, it reorganizes DNA in the nucleus so that this region comes in contact with Myc, enabling it to regulate Myc expression.

This happens only in leukemia, meaning the enhancer is unique. The work thus identifies an important mechanism that enables leukemia to proliferate. This in turn explains how leukemia drugs that have recently been discovered exert their beneficial effect. One notable example is a drug called JQ1 that Vakoc identified in 2011 as an inhibitor of a cancer-promoting protein called Brd4, which plays a pivotal role in the AML disease process. JQ1 likely blocks the interaction between Brd4 and the same enhancer element identified in the newly published research. This then sets off changes in the cell nucleus that prevent Myc expression.

"SWI/SNF is a drug target that we are now actively pursuing, but this study goes far beyond this result, providing fundamental insight into how cancer cells exert control over genes," Vakoc says. "By enabling us to understand the mechanism behind effective anti-leukemia drugs, our findings should allow us to design better therapeutics that will overcome drug resistance and be as safe as possible."

This work was supported by Starr Cancer Consortium, Edward P. Evans Foundation, the Martin Sass Foundation, the F.M. Kirby Foundation, Alex's Lemonade Stand Foundation, the Laurie Strauss Foundation, the V Foundation, the Burroughs-Wellcome Fund, Cold Spring Harbor Laboratory National Cancer Institute Cancer Center Support grant, Leukemia and Lymphoma Society Specialized Center of Research (SCOR) grant, and National Institutes of Health grants from NCI and NIGMS.

"Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation" appears online ahead of print in Genes & Development on November 26, 2013. The authors are: Junwei Shi, Warren Whyte, Cinthya Zepeda-Mendoza, Joseph Milazzo, Chen Shen, Melanie Eckersley-Maslin, Jae-Seok Roe, Jessica Minder, Fatih Mercan, Eric Wang, Amy Campbell, Shinpei Kawaoka, Sarah Shareef, Zhu Zhu, Jude Kendall, Matthias Muhar, Christian Haslinger, Ming Yu, Robert Roeder, Michael Wigler, Gerd Blobel, Johannes Zuber, David Spector, Richard Young, and Christopher Vakoc. The paper can be obtained online at: http://genesdev.cshlp.org.

About Cold Spring Harbor Laboratory Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for the impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 600 researchers and technicians strong and its Meetings & Courses program hosts more than 12,000 scientists from around the world each year to its Long Island campus and its China center.

Jaclyn Jansen | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>