Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists discover the largest assembly of whale sharks ever recorded

Whale sharks (Rhincodon typus) are often thought to be solitary behemoths that live and feed in the open ocean. Scientists at the Smithsonian Institution and colleagues, however, have found that this is not necessarily the case, finding that whale sharks can be gregarious and amass in the hundreds to feed in coastal waters.

Aggregations, or schools, of whale sharks have been witnessed in the past, ranging from several individual sharks to a few dozen. However this new research, which involved both surface and aerial surveys, has revealed an enormous aggregation of whale sharks—the largest ever reported—with up to 420 individuals off the coast of the Yucatán Peninsula in Mexico. What brings them together is food.

This is an aerial photograph of whale sharks feeding at the Afuera aggregation in August 2009. Credit: Oscar Reyes

"Whale sharks are the largest species of fish in the world, yet they mostly feed on the smallest organisms in the ocean, such as zooplankton," said Mike Maslanka, biologist at the Smithsonian Conservation Biology Institute and head of the Department of Nutrition Sciences. "Our research revealed that in this case, the hundreds of whale sharks had gathered to feed on dense patches of fish eggs."

While whale sharks may seem conspicuous as the heaviest and longest of all fishes, growing more than 40 feet long, there is still much that is unknown about them. They have a very widespread distribution, occurring in all tropical and sub-tropical regions of the ocean around the world. Understanding this filter-feeder's diet is especially important since food sources determine much of the whale shark's movement and location.

During the dozens of surface trips that team members made to the aggregation, called the "Afuera" aggregation, they used fine nets to collect food samples inside and immediately outside the school of feeding whale sharks. Scientists then used DNA barcoding analysis to examine the collected fish eggs and determine the species. They found that the eggs were from little tunny (Euthynnus alletteratus), a member of the mackerel family.

"Having DNA barcoding is an incredibly valuable resource for this research," said Lee Weigt, head of the Laboratories of Analytical Biology at the Smithsonian's National Museum of Natural History. "It not only allowed us to know what exactly this huge aggregation of whale sharks were feeding on, not readily done from only physical observations of eggs, but it also revealed a previously unknown spawning ground for little tunny."

The team of scientists also examined a nearby, less dense aggregation of whale sharks, known as the Cabo Catoche aggregation, off the northern tip of the Yucatán Peninsula. They found that the prey of this group mostly consisted of copepods (small crustaceans) and shrimp. Increased sightings at Afuera coincided with decreased sightings at Cabo Catoche, and both groups had the same sex ratio, implying that the same animals were involved in both aggregations.

"With two significant whale shark aggregation areas and at the very least one active spawning ground for little tunny, the northeastern Yucatán marine region is a critical habitat that deserves more concerted conservation effort," said Maslanka.

The whale shark is listed as "vulnerable" with the International Union for Conservation of Nature and Natural Resources. Populations appear to have been depleted by harpoon fisheries in Southeast Asia and perhaps incidental capture in other fisheries.

The scientists' findings were published in the scientific journal PLoS ONE, April 2011. In addition to the Smithsonian Institution, team members were from the Comisión Nacional de Áreas Naturales Protegidas in Cancún, Mexico, the Center for Shark Research in Sarasota, Fl., project DOMINO and the Georgia Aquarium, Inc. in Atlanta, Ga.

John Gibbons | EurekAlert!
Further information:

Further reports about: Conservation Science DNA Maslanka Whale Yucatan food source synthetic biology whale sharks

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>