Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover the largest assembly of whale sharks ever recorded

26.05.2011
Whale sharks (Rhincodon typus) are often thought to be solitary behemoths that live and feed in the open ocean. Scientists at the Smithsonian Institution and colleagues, however, have found that this is not necessarily the case, finding that whale sharks can be gregarious and amass in the hundreds to feed in coastal waters.

Aggregations, or schools, of whale sharks have been witnessed in the past, ranging from several individual sharks to a few dozen. However this new research, which involved both surface and aerial surveys, has revealed an enormous aggregation of whale sharks—the largest ever reported—with up to 420 individuals off the coast of the Yucatán Peninsula in Mexico. What brings them together is food.


This is an aerial photograph of whale sharks feeding at the Afuera aggregation in August 2009. Credit: Oscar Reyes

"Whale sharks are the largest species of fish in the world, yet they mostly feed on the smallest organisms in the ocean, such as zooplankton," said Mike Maslanka, biologist at the Smithsonian Conservation Biology Institute and head of the Department of Nutrition Sciences. "Our research revealed that in this case, the hundreds of whale sharks had gathered to feed on dense patches of fish eggs."

While whale sharks may seem conspicuous as the heaviest and longest of all fishes, growing more than 40 feet long, there is still much that is unknown about them. They have a very widespread distribution, occurring in all tropical and sub-tropical regions of the ocean around the world. Understanding this filter-feeder's diet is especially important since food sources determine much of the whale shark's movement and location.

During the dozens of surface trips that team members made to the aggregation, called the "Afuera" aggregation, they used fine nets to collect food samples inside and immediately outside the school of feeding whale sharks. Scientists then used DNA barcoding analysis to examine the collected fish eggs and determine the species. They found that the eggs were from little tunny (Euthynnus alletteratus), a member of the mackerel family.

"Having DNA barcoding is an incredibly valuable resource for this research," said Lee Weigt, head of the Laboratories of Analytical Biology at the Smithsonian's National Museum of Natural History. "It not only allowed us to know what exactly this huge aggregation of whale sharks were feeding on, not readily done from only physical observations of eggs, but it also revealed a previously unknown spawning ground for little tunny."

The team of scientists also examined a nearby, less dense aggregation of whale sharks, known as the Cabo Catoche aggregation, off the northern tip of the Yucatán Peninsula. They found that the prey of this group mostly consisted of copepods (small crustaceans) and shrimp. Increased sightings at Afuera coincided with decreased sightings at Cabo Catoche, and both groups had the same sex ratio, implying that the same animals were involved in both aggregations.

"With two significant whale shark aggregation areas and at the very least one active spawning ground for little tunny, the northeastern Yucatán marine region is a critical habitat that deserves more concerted conservation effort," said Maslanka.

The whale shark is listed as "vulnerable" with the International Union for Conservation of Nature and Natural Resources. Populations appear to have been depleted by harpoon fisheries in Southeast Asia and perhaps incidental capture in other fisheries.

The scientists' findings were published in the scientific journal PLoS ONE, April 2011. In addition to the Smithsonian Institution, team members were from the Comisión Nacional de Áreas Naturales Protegidas in Cancún, Mexico, the Center for Shark Research in Sarasota, Fl., project DOMINO and the Georgia Aquarium, Inc. in Atlanta, Ga.

John Gibbons | EurekAlert!
Further information:
http://www.si.edu

Further reports about: Conservation Science DNA Maslanka Whale Yucatan food source synthetic biology whale sharks

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>