Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover kill-switch controls immune-suppressing cells

15.07.2013
Scientists have uncovered the mechanism that controls whether cells that are able to suppress immune responses live or die.

The discovery of the cell death processes that determine the number of 'regulatory T cells' an individual has could one day lead to better treatments for immune disorders.

Regulatory T cells are members of a group of immune cells called T cells. Most T cells actively respond to clear the body of infections. By contrast, regulatory T cells are considered to be immune suppressing cells because they can 'switch off' an immune response to a particular molecule. This immune suppression is important for preventing inappropriate immune attack of the body's own tissues, which is the underlying cause of autoimmune diseases such as lupus and type 1 diabetes.

A shortage of regulatory T cells is linked with the development of autoimmune and inflammatory conditions, while some people with higher than normal numbers of regulatory T cells cannot fight infections properly.

Dr Daniel Gray and Ms Antonia Policheni from the Walter and Eliza Hall Institute's Molecular Genetics of Cancer and Immunology divisions made the discovery about how regulatory T cell numbers are controlled as part of an international team of researchers jointly led by Dr Gray and Dr Adrian Liston who is head of the Flanders Institute for Biotechnology (VIB) Laboratory for Autoimmune Genetics at the University of Leuven, Belgium. They found that regulatory T cells are constantly being produced in the body, but their numbers are held steady by a process of cell death. The findings are published today in the journal Nature Immunology.

Cell death, or apoptosis, is important in many immune cell types for the removal of excess, defective or damaged cells. The decision of these cells on whether to live or die is controlled by a family of proteins called the 'Bcl-2 protein family'. This includes proteins that can either promote cell survival or trigger cell death, in response to many different stimuli.

Dr Gray said the team had discovered that Bcl-2 family proteins were important determinants of regulatory T cell numbers. "Regulatory T cell death is highly dependent on the activity of two opposing Bcl-2 family proteins, called Mcl-1 and Bim," he said. "Mcl-1 is required for regulatory T cell survival, allowing them to suppress unhealthy immune responses, while Bim triggers the death of regulatory T cells. Without Mcl-1 activity, regulatory T cell numbers fall, provoking lethal autoimmune disease. Conversely, if Bim activity is lost, regulatory T cells accumulate in abnormally high numbers."

Dr Liston said the finding was exciting, because it opened up new ways to control regulatory T cell numbers in disease. "Already, there is considerable interest in a new class of agents, called 'BH-3 mimetics' that target Bcl-2-like molecules including Mcl-1," he said. "If agents that can influence regulatory T cell survival can be developed, we could see new ways to suppress autoimmune disease, by boosting regulatory T cell numbers, or to enhance beneficial immune responses, by silencing regulatory T cells."

The research was funded by the Australian National Health and Medical Research Council, the Victorian government, the European Union, the Belgian Government, and the VIB.

Liz Williams | EurekAlert!
Further information:
http://www.wehi.edu.au

More articles from Life Sciences:

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>