Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover key step for regulating embryonic development

23.04.2010
New on-off switches: SUMO protein silences developmental genes, SNP2 snips SUMO to allow gene expression

Deleting a gene in mouse embryos caused cardiac defects and early death, leading researchers to identify a mechanism that turns developmental genes off and on as an embryo matures, a team led by a scientist at The University of Texas M. D. Anderson Cancer Center reported today in Molecular Cell.

"Our study focused on regulation of two genes that are critical to the healthy development of the heart, but many other genes are regulated in this way," said senior author Edward T.H. Yeh, M.D., professor and chair of M. D. Anderson's Department of Cardiology. "This novel pathway marks an advance in our understanding of how developmental genes are turned on and off."

All cells in an embryo contain the same DNA. Different genes are turned off and on in different cells at different times to form specific tissues and organs as the embryo develops. This gene regulation is accomplished by epigenetic processes that control gene expression without altering DNA. Instead, epigenetic processes attach chemical groups to genes or to histones, proteins that are intertwined with DNA to form chromosomes, to activate genes or to shut them down.

"Our findings provide a new window through which to look at epigenetic control," Yeh said, "and how epigenetics and development are unexpectedly tied together by the SUMO/SENP2 system."

The key actors are members of two tightly associated families of proteins that Yeh and colleagues discovered and continue to study. The first, Small Ubiquitin-related Modifier, or SUMO, attaches to other proteins to modify their function or physically move them within the cell (SUMOylation). The second, Sentrin/SUMO-specific protease 2, or SENP2, snips SUMO off of proteins (de-SUMOylation).

This line of research started when Yeh and colleagues knocked SENP2 out of mouse DNA and found that the embryos died at about day 10. Their hearts had smaller chambers and thinner walls. Through a series of experiments, the team worked backward from this observation to show:

A group of proteins called the polycomb repressive complex 1 (PRC1) that silences genes must first bind to a particular methylated address on a histone and,

A key component of the complex must be SUMOylated to make this connection, which results in

the silencing of Gata4 and Gata6, genes that are essential for cardiac development.

In early development, SENP2 works as a switch to turn on Gata4 and Gata6

"When SENP2 is turned on, it peels SUMO off of PRC1, which then falls off the histone, and when that happens, the lock is removed and genes are transcribed," Yeh said. Gata4 and Gata6 are free to properly develop the heart.

In short, SUMO helps the PRC1 complex repress genes, and SENP2 reverses this repression, allowing gene transcription and expression.

"By understanding how development unfolds, we can better control this process, which includes cell proliferation and organ development," Yeh said. "This will help us to better understand cancer.

"SUMO and SENP are important in cancer development, neurological diseases and heart development. Everything under the sun can be regulated by this system," Yeh said. "Here we've established a new role for SUMOylation, mediating the interaction between protein and protein methylation in epigenetic regulation."

Funding for this research was provided by from the National Natural Science Foundation of China, National Basic Research Program of China and grants from the U.S. National Cancer Institute. Yeh also is the McNair Scholar of the Texas Heart Institute/St. Luke's Episcopal Hospital.

Co-authors with Yeh are co-first author Yitao Qi, Ph.D., and Robert Schwartz, Ph.D., both of the Texas Heart Institute/St. Luke's Episcopal Hospital, and co-first author Xunlei Kang, M.D., Ph.D., Yong Zuo, Ph.D., Qi Wang, Yanqiong Zou and Jinke Cheng, D.V.M., all of the Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine in Shanghai.

About M. D. Anderson

The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For six of the past eight years, including 2009, M. D. Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

Further reports about: Cancer DNA PRC1 SENP2 Sumoylation cell death genetic processes mouse embryo neurological disease

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>