Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists discover how iron levels and a faulty gene cause bowel cancer

HIGH LEVELS of iron could raise the risk of bowel cancer by switching on a key pathway in people with faults in a critical anti-cancer gene, according to a study published in Cell Reports* yesterday (Thursday).
Cancer Research UK scientists, based at the University of Birmingham and the Beatson Institute for Cancer Research in Glasgow, found bowel cancers were two to three times more likely to develop in mice with a faulty APC gene that were fed high amounts of iron compared to mice who still had a working APC gene.

In contrast, mice with a faulty APC gene fed a diet low in iron did not develop bowel cancer at all.

Study author Professor Owen Sansom, deputy director of the Cancer Research UK Beatson Institute for Cancer Research in Glasgow, said: "We've made a huge step in understanding how bowel cancer develops. The APC gene is faulty in around eight out of 10 bowel cancers but until now we haven't known how this causes the disease.

"It's clear that iron is playing a critical role in controlling the development of bowel cancer in people with a faulty APC gene. And, intriguingly, our study shows that even very high levels of iron in the diet don't cause cancer by itself, but rely on the APC gene."

Co-author Dr Chris Tselepis, a Cancer Research UK scientist at the University of Birmingham, said: "Our results also suggest that iron could be raising the risk of bowel cancer by increasing the number of cells in the bowel with APC faults. The more of these cells in the bowel, the greater the chance that one of these will become a starting point for cancer.

"We're now planning to develop treatments that reduce the amount of iron in the bowel and so could lower the risk of developing bowel cancer. We hope to start using these in trials in the next few years in people who are at a greater risk."

The study could also explain why foods such as red meat, which have high levels of iron, are linked to an increased risk of bowel cancer.

When the APC gene is deleted, two proteins are switched on that cause iron to build up in bowel cells. When this happens, a key cancer signalling pathway called wnt is switched on, causing cells to grow out of control.

In mice fed a diet with no iron, cells with a faulty APC gene were killed and bowel cancers did not develop. Mice with a fully functioning APC gene did not develop bowel cancers, even when fed a diet high in iron. In these bowel cells, the iron accumulation proteins are turned off and wnt signalling remains inactive.

Dr Julie Sharp, senior science information manager at Cancer Research UK, said: "Bowel cancer is the third most common cancer in the UK. These findings suggest a potentially effective way of reducing the chances of bowel cancer developing in people who are at high risk. Finding ways of 'mopping up' the iron that is in the bowel could have a real impact on the number of people who develop the disease.

"This research is a great example of scientists coming together and sharing their different expertise to find new ways of understanding and potentially preventing cancer."

For media enquiries please contact Simon Shears in the Cancer Research UK press office on 020 3469 8054 or, out-of-hours, the duty press officer on 07050 264 059.

Notes to editors:

*Radulescu, S et al. Luminal iron levels govern intestinal tumourigenesis following Apc loss in vivo Cell Reports (2012)

The University of Birmingham

The University of Birmingham is a truly vibrant, global community and an internationally-renowned institution. Ranked amongst the world's top 100 institutions, its work brings people from across the world to Birmingham, including researchers and teachers and more than 4,000 international students from nearly 150 countries.
The University is home to nearly 30,000 students. With more than 7,500 postgraduate students from across the world, Birmingham is one of the most popular universities for postgraduate study in the UK.

The University plays an integral role in the economic, social and cultural growth of local and regional communities; working closely with businesses and organisations, employing approximately 6,000 staff and providing 10,000 graduates annually.

About the Beatson Institute for Cancer Research

The Beatson Institute for Cancer Research is core-funded by Cancer Research UK and provides a dynamic, supportive and well-resourced environment for its basic and translational scientists. Its mission is to:

Understand how cancer cells grow, survive and spread
Identify critical components of these pathways as targets for novel cancer treatments

Help translate this knowledge for the benefit of cancer patients

At the beginning of 2008 the Beatson Institute moved into a new state-of-the –art building – further information can be found at

About Cancer Research UK

Cancer Research UK is the world's leading cancer charity dedicated to saving lives through research
The charity's groundbreaking work into the prevention, diagnosis and treatment of cancer has helped save millions of lives. This work is funded entirely by the public.
Cancer Research UK has been at the heart of the progress that has already seen survival rates in the UK double in the last forty years.
Cancer Research UK supports research into all aspects of cancer through the work of over 4,000 scientists, doctors and nurses.

Together with its partners and supporters, Cancer Research UK's vision is to beat cancer.

For further information about Cancer Research UK's work or to find out how to support the charity, please call 0300 123 1861 or visit Follow us on Twitter and Facebook

Simon Shears | EurekAlert!
Further information:

Further reports about: APC APC gene Beatson Birmingham Cancer bowel cancer cell death critical anti-cancer gene

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>