Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists discover influenza's Achilles heel: Antioxidants

New research in the FASEB Journal opens the door for new drugs that could prevent severe flu-related lung damage

As the nation copes with a shortage of vaccines for H1N1 influenza, a team of Alabama researchers have raised hopes that they have found an Achilles' heel for all strains of the flu—antioxidants.

In an article appearing in the November 2009 print issue of the FASEB Journal ( they show that antioxidants—the same substances found in plant-based foods—might hold the key in preventing the flu virus from wreaking havoc on our lungs.

"The recent outbreak of H1N1 influenza and the rapid spread of this strain across the world highlights the need to better understand how this virus damages the lungs and to find new treatments," said Sadis Matalon, co-author of the study. "Additionally, our research shows that antioxidants may prove beneficial in the treatment of flu."

Matalon and colleagues showed that the flu virus damages our lungs through its "M2 protein," which attacks the cells that line the inner surfaces of our lungs (epithelial cells). Specifically, the M2 protein disrupts lung epithelial cells' ability to remove liquid from inside of our lungs, setting the stage for pneumonia and other lung problems. The researchers made this discovery by conducting three sets of experiments using the M2 protein and the lung protein they damage. First, frog eggs were injected with the lung protein alone to measure its function. Second, researchers injected frog eggs with both the M2 protein and the lung protein and found that the function of the lung protein was significantly decreased. Using molecular biology techniques, scientists isolated the segment of the M2 protein responsible for the damage to the lung protein. Then they demonstrated that without this segment, the protein was unable to cause damage. Third, the full M2 protein (with the "offending" segment intact) and the lung protein were then re-injected into the frog eggs along with drugs known to remove oxidants. This too prevented the M2 protein from causing damage to the lung protein. These experiments were repeated using cells from human lungs with exactly the same results.

"Although vaccines will remain the first line of intervention against the flu for a long time to come, this study opens the door for entirely new treatments geared toward stopping the virus after you're sick," said Gerald Weissmann, M.D., Editor-in-Chief of the FASEB Journal, "and as Thanksgiving approaches, this discovery is another reason to drink red wine to your health."

Receive monthly highlights from the FASEB Journal by e-mail. Sign up at The FASEB Journal ( is published by the Federation of the American Societies for Experimental Biology (FASEB). The journal has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century and is the most cited biology journal worldwide according to the Institute for Scientific Information. FASEB comprises 22 nonprofit societies with more than 80,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB advances health and welfare by promoting progress and education in biological and biomedical sciences through service to its member societies and collaborative advocacy.

Details: Ahmed Lazrak, Karen E. Iles, Gang Liu, Diana L. Noah, James W. Noah, and Sadis Matalon. Influenza virus M2 protein inhibits epithelial sodium channels by increasing reactive oxygen species. FASEB J. doi:10.1096/fj.09-135590 ;

Cody Mooneyhan | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>