Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover that Hawai'i is not an evolutionary dead end for marine life

04.07.2011
The question of why there are so many species in the sea and how new species form remains a central question in marine biology. Below the waterline, about 30% of Hawai'i's marine species are endemic – being found only in Hawai'i and nowhere else on Earth – one of the highest rates of endemism found worldwide.

But where did this diversity of species come from? Hawai'i is famous for its adaptive radiations (the formation of many species with specialized lifestyles from a single colonist) above the water line. Still, spectacular examples of adaptive radiations such as Hawaiian honeycreeper birds and fruit flies are not found in Hawaiian waters.

Marine species were thought to colonize Hawaii and eventually diverge into an isolated native species, but were doomed to an evolutionary "dead end" with no further specialization and speciation.

Dr. Chris Bird and fellow researchers at the Hawai'i Institute of Marine Biology (HIMB), however, have shown that Hawai'i hosts three limpets (cone shaped marine snails, locally known as 'opihi) that defy classification as dead-enders. The standard explanation for three species of 'opihi is that Hawai'i was independently colonized three times; however, using DNA, fossil, and geologic evidence, Dr. Bird has shown that Hawai'i was successfully colonized only once by Japanese limpets, approximately 5 million years ago. The 'opihi then speciated within the Hawaiian Archipelago along an ecological gradient, as they invaded deeper habitats, forming the three species that we observe today (in order from shallow to deep) 'opihi makai'auli, 'opihi 'alinalina, 'opihi ko'ele. Bird proposes that differences in the timing of sperm and egg production and the ability to survive at particular shore levels led to the 'opihi radiation.

While 'opihi may look similar to the untrained eye, Bird demonstrates that each species possesses novel evolutionary adaptations that confer an advantage at a particular shore level, a hallmark signature of natural selection and adaptive radiation. Bird states "the research on 'opihi give us better insight to the processes that produce biodiversity, especially in the ocean where the speciation process is not well understood". Prior to this report, no marine radiations had been found in Hawai'i. Bird continues, "these studies reset the bar for what is considered possible in marine speciation." Is Hawai'i an evolutionary dead end for marine speciation? The humble 'opihi say "no".

Collection and monitoring of the 'opihi is the result of a unique partnership bringing together scientists, traditional cultural practitioners, resource managers from the State of Hawai'i, The Nature Conservancy and community volunteers. Working with the community allows scientists to incorporate crucial information passed down through generations of Native Hawaiians. Monitoring sites surveyed to date include the Big Island of Hawai'i, the Maui Nui complex, O'ahu, and several remote sites in the Papahânaumokuâkea Marine National Monument, the largest marine protected area under U.S. jurisdiction.

Carlie Wiener | EurekAlert!
Further information:
http://www.hawaii.edu

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>