Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists discover that Hawai'i is not an evolutionary dead end for marine life

The question of why there are so many species in the sea and how new species form remains a central question in marine biology. Below the waterline, about 30% of Hawai'i's marine species are endemic – being found only in Hawai'i and nowhere else on Earth – one of the highest rates of endemism found worldwide.

But where did this diversity of species come from? Hawai'i is famous for its adaptive radiations (the formation of many species with specialized lifestyles from a single colonist) above the water line. Still, spectacular examples of adaptive radiations such as Hawaiian honeycreeper birds and fruit flies are not found in Hawaiian waters.

Marine species were thought to colonize Hawaii and eventually diverge into an isolated native species, but were doomed to an evolutionary "dead end" with no further specialization and speciation.

Dr. Chris Bird and fellow researchers at the Hawai'i Institute of Marine Biology (HIMB), however, have shown that Hawai'i hosts three limpets (cone shaped marine snails, locally known as 'opihi) that defy classification as dead-enders. The standard explanation for three species of 'opihi is that Hawai'i was independently colonized three times; however, using DNA, fossil, and geologic evidence, Dr. Bird has shown that Hawai'i was successfully colonized only once by Japanese limpets, approximately 5 million years ago. The 'opihi then speciated within the Hawaiian Archipelago along an ecological gradient, as they invaded deeper habitats, forming the three species that we observe today (in order from shallow to deep) 'opihi makai'auli, 'opihi 'alinalina, 'opihi ko'ele. Bird proposes that differences in the timing of sperm and egg production and the ability to survive at particular shore levels led to the 'opihi radiation.

While 'opihi may look similar to the untrained eye, Bird demonstrates that each species possesses novel evolutionary adaptations that confer an advantage at a particular shore level, a hallmark signature of natural selection and adaptive radiation. Bird states "the research on 'opihi give us better insight to the processes that produce biodiversity, especially in the ocean where the speciation process is not well understood". Prior to this report, no marine radiations had been found in Hawai'i. Bird continues, "these studies reset the bar for what is considered possible in marine speciation." Is Hawai'i an evolutionary dead end for marine speciation? The humble 'opihi say "no".

Collection and monitoring of the 'opihi is the result of a unique partnership bringing together scientists, traditional cultural practitioners, resource managers from the State of Hawai'i, The Nature Conservancy and community volunteers. Working with the community allows scientists to incorporate crucial information passed down through generations of Native Hawaiians. Monitoring sites surveyed to date include the Big Island of Hawai'i, the Maui Nui complex, O'ahu, and several remote sites in the Papahânaumokuâkea Marine National Monument, the largest marine protected area under U.S. jurisdiction.

Carlie Wiener | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>