Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover new genetic variation that contributes to diabetes

09.09.2009
Scientists have identified a genetic variation in people with type 2 diabetes that affects how the body's muscle cells respond to the hormone insulin, in a new study published today in Nature Genetics. The researchers, from Imperial College London and other international institutions, say the findings highlight a new target for scientists developing treatments for diabetes.

Previous studies have identified several genetic variations in people with type 2 diabetes that affect how insulin is produced in the pancreas. Today's study shows for the first time a genetic variation that seems to impair the ability of the body's muscle cells to use insulin to help them make energy.

People with type 2 diabetes can have problems with the body not producing enough insulin and with cells in the muscles, liver and fat becoming resistant to it. Without sufficient insulin, or if cells cannot use insulin properly, cells are unable to take glucose from the blood and turn it into energy. Until now, scientists had not been able to identify the genetic factors contributing to insulin resistance in type 2 diabetes.

In the new research, scientists from international institutions including Imperial College London, McGill University, Canada, CNRS, France, and the University of Copenhagen, Denmark, looked for genetic markers in over 14,000 people and identified four variations associated with type 2 diabetes. One of these was located near a gene called IRS1, which makes a protein that tells the cell to start taking in glucose from the blood when it is activated by insulin. The researchers believe that the variant they have identified interrupts this process, impairing the cells' ability to make energy from glucose. The researchers hope that scientists will be able to target this process to produce new treatments for type 2 diabetes.

Professor Philippe Froguel, one of the corresponding authors of today's study from the Department of Genomic Medicine at Imperial College London, said: "We are very excited about these results - this is the first genetic evidence that a defect in the way insulin works in muscles can contribute to diabetes. Muscle tissue needs to make more energy using glucose than other tissues. We think developing a treatment for diabetes that improves the way insulin works in the muscle could really help people with type 2 diabetes.

"It is now clear that several drugs should be used together to control this disease. Our new study provides scientists developing treatments with a straightforward target for a new drug to treat type 2 diabetes," added Professor Froguel.

The researchers carried out a multistage association study to identify the new gene. First, they looked at genome-wide association data from 1,376 French individuals and identified 16,360 single-nucleotide polymorphisms (SNPs), or genetic variations, associated with type 2 diabetes. The researchers then studied these variations in 4,977 French individuals.

Next, the team selected the 28 most strongly associated SNPs and looked for them in 7,698 Danish individuals. Finally, the researchers identified four SNPs strongly associated with type 2 diabetes. The most significant of these variations was located near the insulin receptor substrate 1, or IRS1, gene.

To test their findings, the team analysed biopsies of skeletal muscle from Danish twins, one of whom had type 2 diabetes. They found that the twin with diabetes had the variation near IRS1 and this variation resulted in insulin resistance in the muscle. They also noted that the variation affected the amount of protein produced by the gene IRS1, suggesting that the SNP controls the IRS1 gene.

Lucy Goodchild | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Water world

20.11.2017 | Life Sciences

Less is more to produce top-notch 2D materials

20.11.2017 | Materials Sciences

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>