Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover new genetic immune disorder in children

08.06.2009
Your immune system plays an important function in your health—it protects you against viruses, bacteria, and other toxins that can cause disease.

In autoinflammatory diseases, however, the immune system goes awry, causing unprovoked and dangerous inflammation. Now, researchers from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), part of the National Institutes of Health, and other institutions have discovered a new autoinflammatory syndrome, a rare genetic condition that affects children around the time of birth. The findings appear in the current issue of the New England Journal of Medicine.

The scientists have termed the new autoinflammatory syndrome DIRA (deficiency of the interleukin-1 receptor antagonist). Children with the disorder display a constellation of serious and potentially fatal symptoms that include swelling of bone tissue; bone pain and deformity; inflammation of the periosteum (a layer of connective tissue around bone); and a rash that can span from small individual pustules to extensive pustulosis that covers most of the patient's body. Most of the children begin to have symptoms from birth to 2 weeks of age.

"The beauty of this discovery is that the symptoms of this devastating disease can now be treated," said NIAMS director and immunodermatologist, Stephen I. Katz, M.D., Ph.D. "The abnormal inflammatory pathways seen in this disease may also help us understand other common diseases that share clinical features, such as psoriasis, as well as other autoinflammatory disorders."

"We knew when we saw these children that we were dealing with a previously unrecognized autoinflammatory syndrome. The clinical characteristics were distinct from other diseases we had seen before," said NIAMS researcher and lead author Raphaela Goldbach-Mansky, M.D., M.H.S. When her colleague, Dr. Ivona Aksentijevich, tested the first patient for genetic abnormalities, their suspicions were confirmed, and ultimately abnormalities were found in a number of other cases.

All the children had inherited mutations in IL1RN, a gene that encodes a protein known as interleukin-1 receptor antagonist (IL-1Ra). IL-1Ra binds to the same cell receptors as the inflammatory protein interleukin-1, and acts as a brake on this inflammatory protein. Without IL-1Ra, the children's bodies cannot control systemic inflammation that can be caused by interleukin-1.

The scientists identified nine patients from six families with DIRA in the Canadian province of Newfoundland, the Netherlands, Lebanon, and Puerto Rico. Those who were alive at the time of diagnosis—six in all—were treated with anakinra, a drug that is normally used for rheumatoid arthritis and is a synthetic form of human IL-1Ra. Although the patients were resistant to other medications such as steroids, most responded successfully and immediately to anakinra. "Our first patient had been unresponsive to several treatments, and his health care team had almost given up. But with anakinra, he was out of the hospital in 10 days and his symptoms resolved," Dr. Goldbach-Mansky said.

Although the mutation that causes DIRA is rare, as many as 2.5 percent of the population of northwest Puerto Rico are carriers. Since DIRA is recessively inherited, these data suggest that it may be present in about 1 in 6,300 births in this population. Because the mutation was found in three independent Dutch families, newborn screening for DIRA in this population, as well as that of northwest Puerto Rico, may be warranted, Dr. Goldbach-Mansky said.

"The DIRA discovery can be attributed to an innovative and collaborative effort between clinicians and laboratory researchers at NIAMS and an international team of dedicated investigators," said NIAMS Clinical Director and coauthor Daniel L. Kastner, M.D., Ph.D. "Moreover, the unveiling of this novel autoinflammatory syndrome provides us with a tool to further dissect the role of interleukin-1 in human biology and disease."

In addition to the NIAMS, other support came from the National Cancer Institute; the National Institute of Allergy and Infectious Diseases; the NIH Clinical Center; the National Human Genome Research Institute; Memorial University of St. John's, Newfoundland; the University of Iowa, Iowa City; the University of Utrecht, Netherlands; the University of Toronto, Canada; Lund University, Malmo, Sweden; Shafallah Medical Genetics Center, Qatar; Feinstein Institute, Manhasset; and Erasmus Medical School, Rotterdam, Netherlands.

For more information about the NIAMS Intramural Clinical Research Program, visit the NIAMS Web site at http://www.niams.nih.gov/research/Ongoing_Research/Branch_Lab/Clinical_Director.

For more information about the NIAMS Genetics and Genomics Branch, visit the NIAMS Web site at http://www.niams.nih.gov/Research/Ongoing_Research/Branch_Lab/Genetics_and

_Genomics/default.asp.

For more information about autoinflammatory diseases, visit the Medline Plus Web site, a service of the NIH's National Library of Medicine, at http://www.medlineplus.gov.

The mission of the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), a part of the Department of Health and Human Services' National Institutes of Health, is to support research into the causes, treatment, and prevention of arthritis and musculoskeletal and skin diseases; the training of basic and clinical scientists to carry out this research; and the dissemination of information on research progress in these diseases. For more information about NIAMS, call the information clearinghouse at 301-495-4484 or 877-22–NIAMS (toll-free call) or visit the NIAMS Web site at http://www.niams.nih.gov.

The National Institutes of Health — The Nation's Medical Research Agency — includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational research, and it investigates the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Aksentijevich I, Masters SL, Ferguson PJ, et al. An autoinflammatory disease with deficiency of the interleukin-1 receptor antagonist. N Engl J Med 2009;360:2416-27.

Trish Reynolds | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>