Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover new genetic immune disorder in children

08.06.2009
Your immune system plays an important function in your health—it protects you against viruses, bacteria, and other toxins that can cause disease.

In autoinflammatory diseases, however, the immune system goes awry, causing unprovoked and dangerous inflammation. Now, researchers from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), part of the National Institutes of Health, and other institutions have discovered a new autoinflammatory syndrome, a rare genetic condition that affects children around the time of birth. The findings appear in the current issue of the New England Journal of Medicine.

The scientists have termed the new autoinflammatory syndrome DIRA (deficiency of the interleukin-1 receptor antagonist). Children with the disorder display a constellation of serious and potentially fatal symptoms that include swelling of bone tissue; bone pain and deformity; inflammation of the periosteum (a layer of connective tissue around bone); and a rash that can span from small individual pustules to extensive pustulosis that covers most of the patient's body. Most of the children begin to have symptoms from birth to 2 weeks of age.

"The beauty of this discovery is that the symptoms of this devastating disease can now be treated," said NIAMS director and immunodermatologist, Stephen I. Katz, M.D., Ph.D. "The abnormal inflammatory pathways seen in this disease may also help us understand other common diseases that share clinical features, such as psoriasis, as well as other autoinflammatory disorders."

"We knew when we saw these children that we were dealing with a previously unrecognized autoinflammatory syndrome. The clinical characteristics were distinct from other diseases we had seen before," said NIAMS researcher and lead author Raphaela Goldbach-Mansky, M.D., M.H.S. When her colleague, Dr. Ivona Aksentijevich, tested the first patient for genetic abnormalities, their suspicions were confirmed, and ultimately abnormalities were found in a number of other cases.

All the children had inherited mutations in IL1RN, a gene that encodes a protein known as interleukin-1 receptor antagonist (IL-1Ra). IL-1Ra binds to the same cell receptors as the inflammatory protein interleukin-1, and acts as a brake on this inflammatory protein. Without IL-1Ra, the children's bodies cannot control systemic inflammation that can be caused by interleukin-1.

The scientists identified nine patients from six families with DIRA in the Canadian province of Newfoundland, the Netherlands, Lebanon, and Puerto Rico. Those who were alive at the time of diagnosis—six in all—were treated with anakinra, a drug that is normally used for rheumatoid arthritis and is a synthetic form of human IL-1Ra. Although the patients were resistant to other medications such as steroids, most responded successfully and immediately to anakinra. "Our first patient had been unresponsive to several treatments, and his health care team had almost given up. But with anakinra, he was out of the hospital in 10 days and his symptoms resolved," Dr. Goldbach-Mansky said.

Although the mutation that causes DIRA is rare, as many as 2.5 percent of the population of northwest Puerto Rico are carriers. Since DIRA is recessively inherited, these data suggest that it may be present in about 1 in 6,300 births in this population. Because the mutation was found in three independent Dutch families, newborn screening for DIRA in this population, as well as that of northwest Puerto Rico, may be warranted, Dr. Goldbach-Mansky said.

"The DIRA discovery can be attributed to an innovative and collaborative effort between clinicians and laboratory researchers at NIAMS and an international team of dedicated investigators," said NIAMS Clinical Director and coauthor Daniel L. Kastner, M.D., Ph.D. "Moreover, the unveiling of this novel autoinflammatory syndrome provides us with a tool to further dissect the role of interleukin-1 in human biology and disease."

In addition to the NIAMS, other support came from the National Cancer Institute; the National Institute of Allergy and Infectious Diseases; the NIH Clinical Center; the National Human Genome Research Institute; Memorial University of St. John's, Newfoundland; the University of Iowa, Iowa City; the University of Utrecht, Netherlands; the University of Toronto, Canada; Lund University, Malmo, Sweden; Shafallah Medical Genetics Center, Qatar; Feinstein Institute, Manhasset; and Erasmus Medical School, Rotterdam, Netherlands.

For more information about the NIAMS Intramural Clinical Research Program, visit the NIAMS Web site at http://www.niams.nih.gov/research/Ongoing_Research/Branch_Lab/Clinical_Director.

For more information about the NIAMS Genetics and Genomics Branch, visit the NIAMS Web site at http://www.niams.nih.gov/Research/Ongoing_Research/Branch_Lab/Genetics_and

_Genomics/default.asp.

For more information about autoinflammatory diseases, visit the Medline Plus Web site, a service of the NIH's National Library of Medicine, at http://www.medlineplus.gov.

The mission of the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), a part of the Department of Health and Human Services' National Institutes of Health, is to support research into the causes, treatment, and prevention of arthritis and musculoskeletal and skin diseases; the training of basic and clinical scientists to carry out this research; and the dissemination of information on research progress in these diseases. For more information about NIAMS, call the information clearinghouse at 301-495-4484 or 877-22–NIAMS (toll-free call) or visit the NIAMS Web site at http://www.niams.nih.gov.

The National Institutes of Health — The Nation's Medical Research Agency — includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational research, and it investigates the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Aksentijevich I, Masters SL, Ferguson PJ, et al. An autoinflammatory disease with deficiency of the interleukin-1 receptor antagonist. N Engl J Med 2009;360:2416-27.

Trish Reynolds | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>