Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover new genetic immune disorder in children

08.06.2009
Your immune system plays an important function in your health—it protects you against viruses, bacteria, and other toxins that can cause disease.

In autoinflammatory diseases, however, the immune system goes awry, causing unprovoked and dangerous inflammation. Now, researchers from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), part of the National Institutes of Health, and other institutions have discovered a new autoinflammatory syndrome, a rare genetic condition that affects children around the time of birth. The findings appear in the current issue of the New England Journal of Medicine.

The scientists have termed the new autoinflammatory syndrome DIRA (deficiency of the interleukin-1 receptor antagonist). Children with the disorder display a constellation of serious and potentially fatal symptoms that include swelling of bone tissue; bone pain and deformity; inflammation of the periosteum (a layer of connective tissue around bone); and a rash that can span from small individual pustules to extensive pustulosis that covers most of the patient's body. Most of the children begin to have symptoms from birth to 2 weeks of age.

"The beauty of this discovery is that the symptoms of this devastating disease can now be treated," said NIAMS director and immunodermatologist, Stephen I. Katz, M.D., Ph.D. "The abnormal inflammatory pathways seen in this disease may also help us understand other common diseases that share clinical features, such as psoriasis, as well as other autoinflammatory disorders."

"We knew when we saw these children that we were dealing with a previously unrecognized autoinflammatory syndrome. The clinical characteristics were distinct from other diseases we had seen before," said NIAMS researcher and lead author Raphaela Goldbach-Mansky, M.D., M.H.S. When her colleague, Dr. Ivona Aksentijevich, tested the first patient for genetic abnormalities, their suspicions were confirmed, and ultimately abnormalities were found in a number of other cases.

All the children had inherited mutations in IL1RN, a gene that encodes a protein known as interleukin-1 receptor antagonist (IL-1Ra). IL-1Ra binds to the same cell receptors as the inflammatory protein interleukin-1, and acts as a brake on this inflammatory protein. Without IL-1Ra, the children's bodies cannot control systemic inflammation that can be caused by interleukin-1.

The scientists identified nine patients from six families with DIRA in the Canadian province of Newfoundland, the Netherlands, Lebanon, and Puerto Rico. Those who were alive at the time of diagnosis—six in all—were treated with anakinra, a drug that is normally used for rheumatoid arthritis and is a synthetic form of human IL-1Ra. Although the patients were resistant to other medications such as steroids, most responded successfully and immediately to anakinra. "Our first patient had been unresponsive to several treatments, and his health care team had almost given up. But with anakinra, he was out of the hospital in 10 days and his symptoms resolved," Dr. Goldbach-Mansky said.

Although the mutation that causes DIRA is rare, as many as 2.5 percent of the population of northwest Puerto Rico are carriers. Since DIRA is recessively inherited, these data suggest that it may be present in about 1 in 6,300 births in this population. Because the mutation was found in three independent Dutch families, newborn screening for DIRA in this population, as well as that of northwest Puerto Rico, may be warranted, Dr. Goldbach-Mansky said.

"The DIRA discovery can be attributed to an innovative and collaborative effort between clinicians and laboratory researchers at NIAMS and an international team of dedicated investigators," said NIAMS Clinical Director and coauthor Daniel L. Kastner, M.D., Ph.D. "Moreover, the unveiling of this novel autoinflammatory syndrome provides us with a tool to further dissect the role of interleukin-1 in human biology and disease."

In addition to the NIAMS, other support came from the National Cancer Institute; the National Institute of Allergy and Infectious Diseases; the NIH Clinical Center; the National Human Genome Research Institute; Memorial University of St. John's, Newfoundland; the University of Iowa, Iowa City; the University of Utrecht, Netherlands; the University of Toronto, Canada; Lund University, Malmo, Sweden; Shafallah Medical Genetics Center, Qatar; Feinstein Institute, Manhasset; and Erasmus Medical School, Rotterdam, Netherlands.

For more information about the NIAMS Intramural Clinical Research Program, visit the NIAMS Web site at http://www.niams.nih.gov/research/Ongoing_Research/Branch_Lab/Clinical_Director.

For more information about the NIAMS Genetics and Genomics Branch, visit the NIAMS Web site at http://www.niams.nih.gov/Research/Ongoing_Research/Branch_Lab/Genetics_and

_Genomics/default.asp.

For more information about autoinflammatory diseases, visit the Medline Plus Web site, a service of the NIH's National Library of Medicine, at http://www.medlineplus.gov.

The mission of the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), a part of the Department of Health and Human Services' National Institutes of Health, is to support research into the causes, treatment, and prevention of arthritis and musculoskeletal and skin diseases; the training of basic and clinical scientists to carry out this research; and the dissemination of information on research progress in these diseases. For more information about NIAMS, call the information clearinghouse at 301-495-4484 or 877-22–NIAMS (toll-free call) or visit the NIAMS Web site at http://www.niams.nih.gov.

The National Institutes of Health — The Nation's Medical Research Agency — includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational research, and it investigates the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Aksentijevich I, Masters SL, Ferguson PJ, et al. An autoinflammatory disease with deficiency of the interleukin-1 receptor antagonist. N Engl J Med 2009;360:2416-27.

Trish Reynolds | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>