Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists discover new genetic sub-code

In a multidisciplinary approach, Professor Yves Barral, from the Biology Department at ETH Zurich and the computer scientists Dr. Gina Cannarozzi and Professor Gaston Gonnet, from the Computer Science Department of ETH Zurich and the SIB Swiss Institute of Bioinformatics, joined forces to chase possible sub-codes in genomic information. The study, which will be published in today's issue of the journal Cell, led to the identification of novel sequence biases and their role in the control of genomic expression.

Each cell of an organism contains a copy of its genome, which is a sequence of deoxyribo nucleotides, also called DNA. The cell is able to translate some of the coding sequences into different proteins, which are necessary for an organism's growth, the repair of some tissues and the provision of energy. For this translation work, the cell follows a decoding procedure provided by the "genetic code", which tells what protein is made from a given sequence. The genetic code has been known since the early 1960's.

The researchers from ETH and SIB now identified a new sub-code that determines at which rate given products must be made by the cell. This information has several interesting implications. First, it provides novel insights into how the decoding machinery works. Secondly, and more pragmatically, it makes possible to read information about gene expression rates directly from genomic sequences, whereas up to now, this information could only be obtained through laborious and expensive experimental approaches, such as microarrays.

"A cell must respond very quickly to injuries such as DNA damage and to potent poisons such as arsenic. The new sub-code enables us to know which genes are turned-on quickly after these insults and which are best expressed slowly. One benefit of this study is that we now can get this information using only analysis of the coding sequence", said Dr. Gina Cannarozzi.

Additionally, the new sub-code provides insight into cellular processes at the molecular level. In every living cell, the translation allowing the production of proteins takes place at specialised factories, the ribosomes. The discovery of this novel sub-code will therefore also provide more information about the functioning of these ribosomes. Indeed, all the data gathered up to now indicate that these factories recycle their own components, the tRNAs, to optimize the speed of protein synthesis.

This discovery of a new way to regulate translation could potentially be exploited to more efficiently produce therapeutic agents and research reagents. For example, many therapeutic agents, such as insulin, are produced by expressing a protein in a foreign host such as E. coli or S. cerevisiae. The new sub-code can be now used to rewrite the information such as to optimize in a much more rational manner the amount of product delivered by the foreign host.

About SIB

The SIB Swiss Institute of Bioinformatics is an academic not-for-profit foundation federating bioinformatics activities throughout Switzerland. Its two-fold mission is to provide world-class core bioinformatics resources to the national and international life science research community in key fields such as genomics, proteomics and systems biology; as well as to lead and coordinate the field of bioinformatics in Switzerland. It has a long-standing tradition of producing state-of-the-art software for the life science research community, as well as carefully annotated databases. The SIB includes 29 world-class research and service groups, which gather close to 400 researchers, in the fields of proteomics, transcriptomics, genomics, systems biology, structural bioinformatics, evolutionary bioinformatics, modelling, imaging, biophysics, and population genetics in Geneva, Lausanne, Berne, Basel and Zurich. SIB expertise is widely appreciated and its services are used by life science researchers worldwide.

Gina Cannarozzi | EurekAlert!
Further information:

Further reports about: DNA ETH cellular process genetic code life science therapeutic agent

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>