Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover How Best to Excite Brain Cells

12.07.2011
Oh, the challenges of being a neuron, responsible for essential things like muscle contraction, gland secretion and sensitivity to touch, sound and light, yet constantly bombarded with signals from here, there and everywhere.

How on earth are busy nerve cells supposed to pick out and respond to relevant signals amidst all that information overload?

Somehow neurons do manage to accomplish the daunting task, and they do it with more finesse than anyone ever realized, new research by University of Michigan mathematician Daniel Forger and coauthors demonstrates. Their findings---which not only add to basic knowledge about how neurons work, but also suggest ways of better designing the brain implants used to treat diseases such as Parkinson's disease---were published July 7 in the online, open-access journal PLoS Computational Biology.

Forger and coauthors David Paydarfar at the University of Massachusetts Medical School and John Clay at the National Institute of Neurological Disorders and Stroke studied neuronal excitation using mathematical models and experiments with that most famous of neuroscience study subjects, the squid giant axon---a long arm of a nerve cell that controls part of the water jet propulsion system in squid.

Among the key findings: Neurons are quite adept at their job. "They can pick out a signal from hundreds of other, similar signals," said Forger, an associate professor of mathematics in the College of Literature, Science and the Arts and a research assistant professor of computational medicine and bioinformatics at the U-M Medical School.

Neurons discriminate among signals based on the signals' "shape," (how a signal changes over time), and Forger and coauthors found that, contrary to prior belief, a neuron's preference depends on context. Neurons are often compared to transistors on a computer, which search for and respond to one specific pattern, but it turns out that neurons are more complex than that. They can search for more than one signal at the same time, and their choice of signal depends on what else is competing for their attention.

"We found that a neuron can prefer one signal---call it signal A---when compared with a certain group of signals, and a different signal---call it signal B---when compared with another group of signals," Forger said. This is true even when signal A and signal B aren't at all alike.

The findings could contribute in two main ways to the design and use of brain implants in treating neurological disorders.

"First, our results determine the optimal signals to stimulate a neuron," Forger said. "These signals are much more effective and require less battery power than what is currently used." Such efficiency would translate into less frequent surgery to replace batteries in patients with brain implants.

"Second, we found that the optimal stimulus is context-dependent," he said, "so the best signal will differ, depending on the part of the brain where the implant is placed."

The research was funded by the Air Force Office of Scientific Research and the National Institutes of Health

More information:
Daniel Forger---http://www.math.lsa.umich.edu/people/facultyDetail.php?uniqname=forger

PLoS Computational Biology---http://www.ploscompbiol.org/home.action

Nancy Ross-Flanigan | Newswise Science News
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>