Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover How Best to Excite Brain Cells

12.07.2011
Oh, the challenges of being a neuron, responsible for essential things like muscle contraction, gland secretion and sensitivity to touch, sound and light, yet constantly bombarded with signals from here, there and everywhere.

How on earth are busy nerve cells supposed to pick out and respond to relevant signals amidst all that information overload?

Somehow neurons do manage to accomplish the daunting task, and they do it with more finesse than anyone ever realized, new research by University of Michigan mathematician Daniel Forger and coauthors demonstrates. Their findings---which not only add to basic knowledge about how neurons work, but also suggest ways of better designing the brain implants used to treat diseases such as Parkinson's disease---were published July 7 in the online, open-access journal PLoS Computational Biology.

Forger and coauthors David Paydarfar at the University of Massachusetts Medical School and John Clay at the National Institute of Neurological Disorders and Stroke studied neuronal excitation using mathematical models and experiments with that most famous of neuroscience study subjects, the squid giant axon---a long arm of a nerve cell that controls part of the water jet propulsion system in squid.

Among the key findings: Neurons are quite adept at their job. "They can pick out a signal from hundreds of other, similar signals," said Forger, an associate professor of mathematics in the College of Literature, Science and the Arts and a research assistant professor of computational medicine and bioinformatics at the U-M Medical School.

Neurons discriminate among signals based on the signals' "shape," (how a signal changes over time), and Forger and coauthors found that, contrary to prior belief, a neuron's preference depends on context. Neurons are often compared to transistors on a computer, which search for and respond to one specific pattern, but it turns out that neurons are more complex than that. They can search for more than one signal at the same time, and their choice of signal depends on what else is competing for their attention.

"We found that a neuron can prefer one signal---call it signal A---when compared with a certain group of signals, and a different signal---call it signal B---when compared with another group of signals," Forger said. This is true even when signal A and signal B aren't at all alike.

The findings could contribute in two main ways to the design and use of brain implants in treating neurological disorders.

"First, our results determine the optimal signals to stimulate a neuron," Forger said. "These signals are much more effective and require less battery power than what is currently used." Such efficiency would translate into less frequent surgery to replace batteries in patients with brain implants.

"Second, we found that the optimal stimulus is context-dependent," he said, "so the best signal will differ, depending on the part of the brain where the implant is placed."

The research was funded by the Air Force Office of Scientific Research and the National Institutes of Health

More information:
Daniel Forger---http://www.math.lsa.umich.edu/people/facultyDetail.php?uniqname=forger

PLoS Computational Biology---http://www.ploscompbiol.org/home.action

Nancy Ross-Flanigan | Newswise Science News
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>