Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover ethnic differences in immune response to TB bacterium

05.07.2013
The immune response to the bacterium that causes tuberculosis (TB) varies between patients of different ethnic origin, raising important implications for the development of tests to diagnose and monitor treatment for the disease, according to new research published today in the journal PLOS Pathogens.

The study, led by researchers at Queen Mary, University of London, in collaboration with the Medical Research Council's National Institute for Medical Research (NIMR),analysed the immune response of 128 newly-diagnosed TB patients in London who were divided by ethnicity into those of African (45), European (27), Asian (55) or mixed European/Asian (1) ancestry.

TB is an infection caused by the TB bacterium Mycobacterium tuberculosis. It commonly affects the lungs. While it grew rare in the UK due to BCG vaccination, improvements in living standards and the introduction of effective antibiotic treatment, it has been on the increase since the late 1980s. TB also remains a major global health problem, responsible for nearly nine million new cases and 1.4million deaths in 2011.

By analysing the levels of various inflammatory markers in blood samples taken before treatment, the scientists showed that immune responses of Asians and Europeans were similar to each other, but different from those of Africans. This difference was caused by ethnic variation in the patients' genetic make-up and was not related to the strain of TB bacterium that the patients were infected with.

Dr Adrian Martineau, Reader in Respiratory Infection and Immunity at the Blizard Institute, part of Queen Mary, who led the research, said: "The TB bacterium has co-evolved with humans following migration to Europe and Asia some 70,000 years ago, and different strains of the TB bacterium disproportionately infect particular ethnic groups. Experiments with white blood cells cultured in the lab have shown that different strains of the TB bacterium elicit different amounts of inflammation. One might therefore expect that TB patients' immune responses would differ according to the strain of TB bacterium that they are infected with.

"However our study has shown, for the first time, that it is actually ethnic differences in the patient's genetic make-up that cause most of this variation in immune responses – with little effect of the TB strain they are infected with."

By analysing blood samples taken from 85 of the original cohort after an eight-week period of intensive treatment, the researchers found that ethnic variation in immune responses became even more marked. A number of immunological biomarkers, which correlated with either fast or slow clearance of the TB bacteria, were identified and found to differ between Africans and Europeans/Asians.

Dr Anna Coussens, who measured immune responses in patient samples at NIMR, said: "These findings have important implications, both for the development of new diagnostic tests, which increasingly rely on analysing the immune response, and also for work to identify candidate biomarkers to measure response to anti-TB treatment. In the future, diagnostic tests and biomarkers will need to be validated in different ethnic populations."

A key factor in determining the ethnic variation identified in the study appears to be the patients' genetic type of vitamin D binding protein – a molecule which binds vitamin D in the circulation.

Dr Martineau said: "There are different genetic types of this protein which vary in frequency between ethnic groups, adding to the growing evidence that vitamin D and the way it is carried in the blood is crucial in determining how a patient's immune system will respond to TB."

Further studies in other populations are now needed to validate the ethnic difference identified.

This work was funded by the British Lung Foundation and the Medical Research Council (MRC).

Dr John Moore-Gillon, Honorary Medical Adviser at the British Lung Foundation, which co-funded the research, said:

"Targeted therapies have long been talked about as the future of medicine. However, in order to develop such treatments, you first need to understand the ways in which the genetic makeup of different people can affect how a disease develops in, and affects, the body. This new research makes great strides forward in doing this for TB, highlighting for the first time how using different approaches for people of differing ethnic backgrounds can help improve our ability to diagnose the disease and monitor the effectiveness of any subsequent treatment.

"TB is a growing problem in the UK. With TB bacteria being notoriously difficult to identify and eradicate from the body, research such as this, that helps improve diagnosis and treatment of the disease, will be vital if we are to keep on top of the battle against its spread."

Tuberculosis (TB) is a bacterial infection. The most common type of TB is in the lungs, known as pulmonary TB. While TB can affect any part of the body, only TB of the lungs or throat is infectious.

Before antibiotics were introduced, TB was a major health problem in the UK. While the condition is much less common now it has gradually increased over the last 20 years, particularly among ethnic minority communities who are originally from places where TB is more common.

In 2011, 8,963 cases of TB were reported in the UK, with more than 6,000 of these cases affecting people who were born outside the UK.

Katrina Coutts | EurekAlert!
Further information:
http://www.qmul.ac.uk

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>