Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover effects of PD-1 blockade on ART therapy in SIV-infected monkeys

09.03.2012
Scientists have discovered that blocking PD-1 (programmed death-1), an immune molecule that inhibits the immune response to viral infections, can have a significant effect on HIV-like illness in nonhuman primates.

In earlier research, the scientists showed that PD-1 blockade could restore T and B cell function against SIV. Now they have new findings about the effects of PD-1 blockade along with antiretroviral therapy (ART).

Vijayakumar Velu, PhD, a scientist at Yerkes National Primate Research Center and the Emory Vaccine Center presented the information at the 19th Conference on Retroviruses and Opportunistic Infections in Seattle, Wash. Rama Rao Amara, PhD, associate professor of microbiology and immunology at Yerkes and the Emory Vaccine Center, led the project.

The researchers treated SIV-infected rhesus macaque monkeys with ART from 16 to 21 weeks post infection then interrupted the therapy. The SIV viral load rapidly increased, along with the frequency of SIV-specific CD8 T cells. Four weeks later, the researchers treated some of the macaques with anti-PD-1 antibody and monitored both the treated and control animals.

Half the animals treated with PD-1 blockade, but only those with measurable CD8 T cells at the time of ART interruption, had a rapid decline in plasma viral load. PD-1 blockade did not enhance the frequency of SIV-specific CD8 T cells, but rather enhanced their function.

"Our results show PD-1 blockade after ART interruption can significantly enhance viral control, but the effect seems to depend on maintaining measurable SIV-specific CD8 T cell response following therapy," says Velu.

Rafi Ahmed, director of the Emory Vaccine Center and a key member of this research team, first identified the PD-1 molecule as a target for therapy designed to reactivate exhausted immune cells in chronic diseases. Other members of the research team are Gordon J. Freeman of Harvard Medical School and Kehmia Titanji, Ravi Dyavar Shetty and Hyun Woo Lee from Yerkes and the Emory Vaccine Center. The team plans to continue studying the interactive effects of PD-1 blockade combined with ART.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>