Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover what drives the development of a fatal form of malaria

20.08.2008
The culprit: one's own immune system

Platelets – those tiny, unassuming cells that cause blood to clot and scabs to form when you cut yourself – play an important early role in promoting cerebral malaria, an often lethal complication that occurs mostly in children.

Affecting as many as half a billion people in tropical and subtropical regions, malaria is one of the oldest recorded diseases and the parasite responsible for it, Plasmodium, among the most studied pathogens of all time. Still, cerebral malaria, which results from a combination of blood vessel and immune system dysfunction, is not well understood.

In a study described in the August 14 issue of Cell Host and Microbe, Johns Hopkins researchers reveal that when red blood cells are infected with the malaria parasite, they activate platelets to secrete the PF4 protein, which triggers the immune system to inflame blood vessels and obstruct capillaries in the brain; both are hallmarks of cerebral malaria.

In their experiments, the Hopkins team first infected human red blood cells in culture with the malaria parasite and found that this did, indeed, induce platelet activation.

The researchers then infected separate sets of live mice with the malaria parasite: one set treated so that it lacked platelets altogether and two others treated with aspirin or Plavix, platelet inhibitors that prevent the release of PF4.

The survival rate of mice without platelets as well as those treated with inhibitors was improved over that of the mice left alone, but only when the treatment began very soon after infection. When researchers started treating mice with platelet inhibitors one day after infecting them, those mice survived more often than control mice. However, when researchers waited until after three days to treat infected mice with platelet inhibitors, that group did no better in terms of survival.

"Cerebral malaria is lethal 20 percent of the time in the best of hands, and here we've shown that something as simple as aspirin, because of its affect on platelets, might be able to improve the outcomes of those who contract this deadly form of the disease," says David Sullivan M.D., an associate professor of molecular microbiology and immunology in the Johns Hopkins University Bloomberg School of Public Health.

To make the specific connection between PF4 and malaria, the scientists compared the responses to malaria infection by so-called "wild type" normal mice and mice genetically engineered to lack pF4. They found that the amount of parasite in the blood was the same in both sets of mice. The notable difference was in the animals' immune responses to that same parasite burden. More than 60 percent of the mice lacking PF4 were still alive after day 10, while only 30 percent of the mice with PF4 survived that long.

"The take-home lesson is that platelets, by releasing PF4, are playing an early role in the wind-up phase of cerebral malaria," says Craig Morrell, DVM, Ph.D., an assistant professor of molecular and comparative pathobiology at the Johns Hopkins University School of Medicine. "Our mouse studies show that timing is critical; with the mice, we know when we infected them and controlled when we treated them. A big challenge in translating this to humans is that people don't know when they get infected.

"Platelets don't get any respect, but they're the second most abundant cell in the blood after red blood cells and packed full of factors that rally the immune system to action. By taking what we know about platelets and their activation and applying it to malaria, we have found a driver of cerebral malaria."

Beth Simpkins | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>