Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover what drives the development of a fatal form of malaria

20.08.2008
The culprit: one's own immune system

Platelets – those tiny, unassuming cells that cause blood to clot and scabs to form when you cut yourself – play an important early role in promoting cerebral malaria, an often lethal complication that occurs mostly in children.

Affecting as many as half a billion people in tropical and subtropical regions, malaria is one of the oldest recorded diseases and the parasite responsible for it, Plasmodium, among the most studied pathogens of all time. Still, cerebral malaria, which results from a combination of blood vessel and immune system dysfunction, is not well understood.

In a study described in the August 14 issue of Cell Host and Microbe, Johns Hopkins researchers reveal that when red blood cells are infected with the malaria parasite, they activate platelets to secrete the PF4 protein, which triggers the immune system to inflame blood vessels and obstruct capillaries in the brain; both are hallmarks of cerebral malaria.

In their experiments, the Hopkins team first infected human red blood cells in culture with the malaria parasite and found that this did, indeed, induce platelet activation.

The researchers then infected separate sets of live mice with the malaria parasite: one set treated so that it lacked platelets altogether and two others treated with aspirin or Plavix, platelet inhibitors that prevent the release of PF4.

The survival rate of mice without platelets as well as those treated with inhibitors was improved over that of the mice left alone, but only when the treatment began very soon after infection. When researchers started treating mice with platelet inhibitors one day after infecting them, those mice survived more often than control mice. However, when researchers waited until after three days to treat infected mice with platelet inhibitors, that group did no better in terms of survival.

"Cerebral malaria is lethal 20 percent of the time in the best of hands, and here we've shown that something as simple as aspirin, because of its affect on platelets, might be able to improve the outcomes of those who contract this deadly form of the disease," says David Sullivan M.D., an associate professor of molecular microbiology and immunology in the Johns Hopkins University Bloomberg School of Public Health.

To make the specific connection between PF4 and malaria, the scientists compared the responses to malaria infection by so-called "wild type" normal mice and mice genetically engineered to lack pF4. They found that the amount of parasite in the blood was the same in both sets of mice. The notable difference was in the animals' immune responses to that same parasite burden. More than 60 percent of the mice lacking PF4 were still alive after day 10, while only 30 percent of the mice with PF4 survived that long.

"The take-home lesson is that platelets, by releasing PF4, are playing an early role in the wind-up phase of cerebral malaria," says Craig Morrell, DVM, Ph.D., an assistant professor of molecular and comparative pathobiology at the Johns Hopkins University School of Medicine. "Our mouse studies show that timing is critical; with the mice, we know when we infected them and controlled when we treated them. A big challenge in translating this to humans is that people don't know when they get infected.

"Platelets don't get any respect, but they're the second most abundant cell in the blood after red blood cells and packed full of factors that rally the immune system to action. By taking what we know about platelets and their activation and applying it to malaria, we have found a driver of cerebral malaria."

Beth Simpkins | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>