Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover new diagnostic markers for Kawasaki disease

20.12.2012
Researchers have discovered proteins in human urine that offer new opportunities for the diagnosis, study and maybe even the treatment of Kawasaki disease.

Mass spectrometry-based proteomic analysis of the human urine proteome, the entire set of proteins found in human urine, uncovered molecular markers that offer significant improvements for the diagnosis of the disease. The results are reported in a new study published in EMBO Molecular Medicine.

“There is no diagnostic test for Kawasaki disease. Currently available diagnostic markers lack the specificity and sensitivity needed for reliable detection of the disease which has motivated our decision to use proteomics to identify new, improved biomarkers,” said Susan Kim, a rheumatologist at Boston Children’s Hospital and an instructor at Harvard Medical School. “Kawasaki disease is often difficult to diagnose and is the most prevalent cause of acquired childhood heart disease in the developed world. Failure to detect it can lead to coronary artery aneurysms and in some cases death, particularly in children who are not diagnosed early enough or when the diagnosis is not considered and acted upon due to the presence of only some of the classic symptoms.”

Kawasaki disease can occur at any age but is most commonly found in children under the age of five years. The disease appears to influence the immune system in such a way that it attacks its own tissues. This leads to inflammation that can damage blood vessels, most notably around the heart. If untreated, Kawasaki disease leads to coronary artery aneurysms in up to 25% of cases.

The researchers used highly sensitive mass spectrometry techniques to profile the proteome of urine samples collected from children who had symptoms of Kawasaki disease. Several molecules were discovered that were exclusively present in the urine of patients with the disease. In particular, elevated levels of filamin C and meprin A were detected in both human blood and urine samples and show considerable potential for use as diagnostics.

Filamin C is a protein that helps maintain the structural integrity of heart and skeletal muscle. Meprin A is an enzyme that breaks down proteins and which is known to regulate the activities of other proteins linked to inflammation. Both of these markers could be used to identify patients with Kawasaki disease accurately using tests that are readily amenable for routine medical use.

“The urine proteome consists of thousands of protein molecules. Patients with Kawasaki disease have a unique urinary proteome that is distinct from the proteome observed for children with other causes of fever,” remarked Hanno Steen, director of the Proteomics Center at Boston Children’s Hospital and associate professor at Harvard Medical School. “In a group of 107 patients, we were able to distinguish children with Kawasaki disease from those with mimicking conditions much more reliably and accurately than currently available testing by measuring their levels of meprin A and filamin C in urine.” The researchers note that further validation of the diagnostic markers is needed and this work is in progress.

The researchers suggest that the development of clinical tests using these new markers may improve the accuracy of diagnosis of children with suspected Kawasaki disease and assist in the development of new treatments. For this purpose, the scientists have made the analyzed proteomes openly available at the Peptide Atlas (www.peptideatlas.org).

Urine proteomics for discovery of improved diagnostic markers of Kawasaki disease

Alex Kentsis, Andrew Shulman, Saima Ahmed, Eileen Brennan, Michael C. Monuteaux, Young-Ho Lee, Susan Lipsett, Joao A. Paulo, Fatma Dedeoglu, Robert Fuhlbrigge, Richard Bachur, Gary Bradwin, Moshe Arditi, Robert P. Sundel, Jane W. Newburger, Hanno Steen, Susan Kim

Read the paper:
http://onlinelibrary.wiley.com/doi/10.1002/emmm.201201494/abstract
doi: 10.1002/emmm.201201494
Further information on EMBO Molecular Medicine is available at www.embomolmed.org
Media Contacts
Barry Whyte
Head | Public Relations and Communications
Yvonne Kaul
Communications Offer
Tel: +49 6221 8891 108/111
communications@embo.org
About EMBO
EMBO is an organization of more than 1500 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to support talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.

Barry Whyte | EMBO
Further information:
http://www.embo.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>