Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover how deadly fungus protects itself

05.02.2009
Finding could lead to new therapies or vaccine for Cryptococcus neoformans

Researchers at Albert Einstein College of Medicine of Yeshiva University have discovered how a deadly microbe evades the human immune system and causes disease.

The study, published in the journal Proceedings of the National Academy of Sciences (PNAS), may help scientists develop new therapies or vaccines against infections caused by Cryptococcus neoformans. These fungal infections occur most commonly in those with compromised immune systems ©¤ especially AIDS patients and transplant patients who must take lifelong immunosuppressive therapy.

The fungus causes an estimated one million deaths each year worldwide, including some 600,000 in sub-Saharan Africa. The lead author of the study was Susana Frases-Carvajal, Ph.D., a postdoctoral fellow in microbiology & immunology at Einstein.

C. neoformans typically enters the body through the lungs and can spread throughout the body, including the brain. The resulting infection, called cryptococcosis, can cause chest pain, dry cough, abdominal swelling, headache, blurred vision, or confusion. The infection can be fatal, especially if not treated with antifungal medications.

"It's a horrendous disease, and even with therapy, you often can't get rid of it," says the paper's senior author, Arturo Casadevall, M.D., Ph.D., professor and chair of microbiology & immunology.

Scientists have known that the capsule surrounding C. neoformans is essential to its ability to cause disease. When the fungus enters a host, the capsule begins to enlarge. "As the capsule grows larger, it reaches a point where immune system scavenger cells, known as macrophages, can't swallow it," says Dr. Casadevall. "But we didn't understand the mechanism responsible for capsule growth."

The protective capsule of C. neoformans is composed of polysaccharides, which are long chains of sugar molecules, or saccharides. Using a technique called dynamic light scattering, Dr. Frases and her colleagues found that the capsule grows by linking more and more saccharides together at the outer edge of the capsule, forming giant molecules pointing in an outward, or axial, direction.

The findings point to potential new targets for drug intervention and reveal a new area of investigation into basic polysaccharide biology. Polysaccharides are poorly understood, partly because of the difficulty of working with them. "Also, scientists have tended to view polysaccharides as boring molecules that simply grow to a specified length," says Dr. Casadevall.

"But this study raises huge questions about polysaccharides," he adds. "For example, how does the organism assemble these molecules, and how does it know how to make molecules that are roughly the same length? We don't know. There appears to be a whole dimension of cellular machinery that we never knew existed."

The other co-authors of the paper, all of Universidade Federal do Rio de Janeiro, Brazil, are: Bruno Pontes, Leonardo Nimrichter, Marcio L. Rodrigues, and Nathan B. Viana.

The study, "Capsule of Cryptococcus neoformans grows by enlargement of polysaccharide molecules," appears in the January 27 issue of PNAS. http://www.pnas.org/content/106/4/1228.abstract

About Albert Einstein College of Medicine of Yeshiva University

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. It is the home to some 2,000 faculty members, 750 M.D. students, 350 Ph.D. students (including 125 in combined M.D./Ph.D. programs) and 380 postdoctoral investigators. Last year, Einstein received more than $130 million in support from the NIH. This includes the funding of major research centers at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Through its extensive affiliation network involving five hospital centers in the Bronx, Manhattan and Long Island ¨C which includes Montefiore Medical Center, Einstein's officially designated University Hospital ¨C the College runs one of the largest post-graduate medical training program in the United States, offering approximately 150 residency programs to more than 2,500 physicians in training.

Michael Heller | EurekAlert!
Further information:
http://www.aecom.yu.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>