Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover how deadly fungus protects itself

05.02.2009
Finding could lead to new therapies or vaccine for Cryptococcus neoformans

Researchers at Albert Einstein College of Medicine of Yeshiva University have discovered how a deadly microbe evades the human immune system and causes disease.

The study, published in the journal Proceedings of the National Academy of Sciences (PNAS), may help scientists develop new therapies or vaccines against infections caused by Cryptococcus neoformans. These fungal infections occur most commonly in those with compromised immune systems ©¤ especially AIDS patients and transplant patients who must take lifelong immunosuppressive therapy.

The fungus causes an estimated one million deaths each year worldwide, including some 600,000 in sub-Saharan Africa. The lead author of the study was Susana Frases-Carvajal, Ph.D., a postdoctoral fellow in microbiology & immunology at Einstein.

C. neoformans typically enters the body through the lungs and can spread throughout the body, including the brain. The resulting infection, called cryptococcosis, can cause chest pain, dry cough, abdominal swelling, headache, blurred vision, or confusion. The infection can be fatal, especially if not treated with antifungal medications.

"It's a horrendous disease, and even with therapy, you often can't get rid of it," says the paper's senior author, Arturo Casadevall, M.D., Ph.D., professor and chair of microbiology & immunology.

Scientists have known that the capsule surrounding C. neoformans is essential to its ability to cause disease. When the fungus enters a host, the capsule begins to enlarge. "As the capsule grows larger, it reaches a point where immune system scavenger cells, known as macrophages, can't swallow it," says Dr. Casadevall. "But we didn't understand the mechanism responsible for capsule growth."

The protective capsule of C. neoformans is composed of polysaccharides, which are long chains of sugar molecules, or saccharides. Using a technique called dynamic light scattering, Dr. Frases and her colleagues found that the capsule grows by linking more and more saccharides together at the outer edge of the capsule, forming giant molecules pointing in an outward, or axial, direction.

The findings point to potential new targets for drug intervention and reveal a new area of investigation into basic polysaccharide biology. Polysaccharides are poorly understood, partly because of the difficulty of working with them. "Also, scientists have tended to view polysaccharides as boring molecules that simply grow to a specified length," says Dr. Casadevall.

"But this study raises huge questions about polysaccharides," he adds. "For example, how does the organism assemble these molecules, and how does it know how to make molecules that are roughly the same length? We don't know. There appears to be a whole dimension of cellular machinery that we never knew existed."

The other co-authors of the paper, all of Universidade Federal do Rio de Janeiro, Brazil, are: Bruno Pontes, Leonardo Nimrichter, Marcio L. Rodrigues, and Nathan B. Viana.

The study, "Capsule of Cryptococcus neoformans grows by enlargement of polysaccharide molecules," appears in the January 27 issue of PNAS. http://www.pnas.org/content/106/4/1228.abstract

About Albert Einstein College of Medicine of Yeshiva University

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. It is the home to some 2,000 faculty members, 750 M.D. students, 350 Ph.D. students (including 125 in combined M.D./Ph.D. programs) and 380 postdoctoral investigators. Last year, Einstein received more than $130 million in support from the NIH. This includes the funding of major research centers at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Through its extensive affiliation network involving five hospital centers in the Bronx, Manhattan and Long Island ¨C which includes Montefiore Medical Center, Einstein's officially designated University Hospital ¨C the College runs one of the largest post-graduate medical training program in the United States, offering approximately 150 residency programs to more than 2,500 physicians in training.

Michael Heller | EurekAlert!
Further information:
http://www.aecom.yu.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>