Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover how chemical repellants trip up insects

26.08.2010
Fruit flies stand in for mosquitoes in Johns Hopkins study

Fire up the citronella-scented tiki torches, and slather on the DEET: Everybody knows these simple precautions repel insects, notably mosquitoes, whose bites not only itch and irritate, but also transmit diseases such as West Nile virus, malaria and dengue.

Now, Johns Hopkins scientists have discovered what it is in the bugs' molecular makeup that enables citronellal (the aromatic liquid used in lotions, sprays and candles) and DEET, to deter insects from landing and feeding on you. A better understanding of these molecular-behavioral links already is aiding the team's search for more effective repellants.

In separate studies published Thursday, August 26, in Neuron and Current Biology, the Johns Hopkins researchers reveal how mosquitoes and other insects taste DEET — a man-made compound that's been the most widely used insect repellent for more than 50 years — and smell citronellal, a commonly used botanical repellant.

Three taste receptors on the insects' tongue and elsewhere are needed to detect DEET. Citronellal detection is enabled by pore-like proteins known as TRP (pronounced "trip") channels. When these molecular receptors are activated by exposure to DEET or citronellal, they send chemical messages to the insect brain, resulting in "an aversion response," the researchers report.

"DEET has low potency and is not as long-lasting as desired, so finding the molecules in insects that detect repellents opens the door to identifying more effective repellents for combating insect-borne disease," says Craig Montell, Ph.D., a professor of biological chemistry and member of Johns Hopkins' Center for Sensory Biology.

Scientists have long known that insects could smell DEET, Montell notes, but the new study showing taste molecules also are involved suggests that the repellant deters biting and feeding because it activates taste cells that are present on the insect's tongue, legs and wing margins.

"When a mosquito lands, it tastes your skin with its gustatory receptors, before it bites," Montell explains. "We think that one of the reasons DEET is relatively effective is that it causes avoidance responses not only through the sense of smell but also through the sense of taste. That's pretty important because even if a mosquito lands on you, there's a chance it won't bite."

The Johns Hopkins study of the repellants, conducted on fruit flies because they are genetically easier to manipulate than mosquitoes, began with a "food choice assay."

The team filled feeding plates with high and low concentrations of color-coded sugar water (red and blue dyes added to the sugar), allowing the flies to feed at will and taking note of what they ate by the color of their stomachs: red, blue or purple (a combination of red and blue). Wild-type (normal) flies preferred the more sugary water to the less sugary water in the absence of DEET. When various concentrations of DEET were mixed in with the more sugary water, the flies preferred the less sugary water, almost always avoiding the DEET-laced sugar water.

Flies that were genetically engineered to have abnormalities in three different taste receptors showed no aversion to the DEET-infused sugar water, indicating the receptors were necessary to detect DEET.

"We found that the insects were exquisitely sensitive to even tiny concentrations of DEET through the sense of taste," Montell reports. "Levels of DEET as low as five hundredths of a percent reduced feeding behavior."

To add to the evidence that three taste receptors (Gr66a, Gr33a and Gr32a) are required for DEET detection, the team attached recording electrodes to tiny taste hairs (sensilla) on the fly tongue and measured the taste-induced spikes of electrical activity resulting from nerve cells responding to DEET. Consistent with the feeding studies, DEET-induced activity was profoundly reduced in flies with abnormal or mutated versions of Gr66a, Gr33a, and Gr32a.

In the second study, Montell and colleagues focused on the repellent citronellal. To measure repulsion to the vapors it emits, they applied the botanical compound to the inside bottom of one of the two connected test tubes, and introduced about 100 flies into the tubes. After a while, the team counted the flies in the two tubes. As expected, the flies avoided citronellal.

The researchers identified two distinct types of cell surface channels that are required in olfactory neurons for avoiding citronellal vapor. The channels let calcium and other small, charged molecules into cells in response to citronellal. One type of channel, called Or83b, was known to be required for avoiding DEET. The second type is a TRP channel.

The team tested flies with mutated versions of 11 different insect TRP channels. The responses of 10 were indistinguishable from wild-type flies. However, the repellent reaction to citronellal was reduced greatly in flies lacking TRPA1. Loss of either Or83b or TRPA1 resulted in avoidance of citronellal vapor.

The team then "mosquito-ized" the fruit flies by putting into them the gene that makes the mosquito TRP channel (TRPA1) and found that the mosquito TRPA1 substituted for the fly TRPA1.

"We found that the mosquito-version of TRPA1 was directly activated by citronellal," says Montell who discovered TRP channels in 1989 in the eyes of fruit flies and later in humans.

Montell's lab and others have tallied 28 TRP channels in mammals and 13 in flies, broadening understanding about how animals detect a broad range of sensory stimuli, including smells and tastes.

"This discovery now raises the possibility of using TRP channels to find better insect repellants."

There is a clear need for improved repellants, Montell says. DEET is not very potent or long-lasting except at very high concentrations, and it cannot be used in conjunction with certain types of fabrics. Additionally, some types of mosquitoes that transmit disease are not repelled effectively by DEET. Citronellal, despite being pleasant-smelling (for humans, anyway), causes a rash when it comes into contact with skin.

The DEET research appearing in Neuron was supported by the National Institute on Deafness and other Communication Disorders. The citronellal research appearing in Current Biology was supported by the National Institute on Deafness and other Communication Disorders, the National Institute of General Medical Sciences, and the Bill and Melinda Gates Foundation.

Authors of the DEET study published in Neuron, in addition to Montell, are Youngseok Lee and Sang Hoon Kim, also of Johns Hopkins.

Authors of the citronellal study published in Current Biology, in addition to Montell, are Young Kwon, Sang Hoon Kim, Youngseok Lee, Bradley Akitake, Owen M. Woodward, and William B. Guggino, all of Johns Hopkins. Two other authors, David Ronderos and Dean P. Smith, are from the University of Texas Southwestern Medical Center.

On the Web:

Craig Montell:
http://neuroscience.jhu.edu/CraigMontell.php
Neuron:
http://www.cell.com/neuron/
Current Biology:
http://www.cell.com/current-biology/

Maryalice Yakutchik | EurekAlert!
Further information:
http://www.cell.com/current-biology/
http://www.cell.com/neuron/

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>