Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover new chemical reaction for DNA production in bacteria and viruses

20.04.2009
Findings could help lead to development of new antibacterial and antiviral drugs

A team of researchers has discovered a new chemical reaction for producing one of the four nucleotides, or building blocks, needed to build DNA. The reaction includes an unusual first step, or mechanism, and unlike other known reactions that produce the DNA building block, uses an enzyme that speeds up, or catalyzes, the reaction without bonding to any of the compounds, or substrates, in the reaction.

The chemical reaction discovered by the researchers uses an enzyme called flavin-dependent thymidylate synthase, or FDTS. The enzyme is coded by the thyX gene and has been found primarily in bacteria and viruses, including several human pathogens and biological warfare agents. In the future, scientists may use this knowledge for the development of new antibacterial and antiviral drugs.

Supported with partial funding from the National Science Foundation (NSF) and led by Amnon Kohen, an associate professor in the departments of chemistry and molecular and cellular biology at the University of Iowa, the team reports their findings in the April 16, 2009, issue of Nature, Letters section.

Prior to the team's discovery, it was thought that thymidylate synthase, or TS, was the primary enzyme catalyzing a reaction that produced one of the four DNA building blocks called deoxy-thymidine monophosphate.

The TS enzyme is coded by the thyA and TYMS genes and is present in most multi-cellular forms of life, including humans.

Both the new and classical enzymatic reactions complete a key step in producing the DNA building block by adding a methyl group--one carbon atom attached to three hydrogen atoms--to the building block's precursor molecule called deoxy-uridine monophosphate, or dUMP.

Even though both reactions accomplish this key step, the reaction mechanisms, or steps, catalyzed by the FDTS and TS enzymes are structurally different.

Kohen and his team identified these differences using a traditional chemical method labeled isotopic substitution and a contemporary form of mass spectrometry using electron spray ionization. In particular, the team identified that the first step of the FTDS-catalyzed reaction involves the transfer of a proton and two electrons, known as a hydride, from a flavin co-factor molecule to dUMP whereas the first step of the TS-catalyzed reaction involves an amino acid from the enzyme's active site forming a bond with dUMP.

"This work nicely illustrates how chemists using traditional techniques and contemporary instrumentation methods can make substantial contributions to important and interesting problems in biology," said Charles Pibel, a program director in NSF's Division of Chemistry.

Since the two chemical reaction mechanisms used for the production of the DNA building block, and therefore DNA, are structurally different in humans and bacteria and viruses, and the enzymes used to catalyze the chemical reactions are different, the researchers' findings may assist with the development of structure-based antibiotics and antiviral drugs that selectively inhibit the activity of FDTS enzymes with little effect on TS enzymes--thereby combating pathogens causing anthrax, tuberculosis, botulism, syphilis, pneumonia, Lyme disease and other human diseases without interfering with human DNA synthesis.

"The proposed new catalytic path of the FDTS enzyme appears to be so very different from that of the classical TS enzyme that we hope that specific inhibitors against it will have little effect on DNA production in humans and thus may lead to development of new drugs with low toxicity. Also, some aspects of the proposed chemistry are not common in enzymology or biological chemistry in general, making the future testing of this mechanism very interesting and of potential broader impact," said Kohen.

Co-authors of the Nature Letter include: Eric M. Koehn and Todd Fleischmann, University of Iowa; John A. Conrad and Bruce A. Palfey, University of Michigan Medical School; Scott A. Lesley, The Joint Center for Structural Genomics at the Genomics Institute of Novartis Research Foundation; and Irimpan I. Mathews, Stanford Synchrotron Radiation Laboratory.

The research was supported by NSF's Divisions of Chemistry and Molecular and Cellular Biosciences award number 0715448 and National Institutes of Health (NIH) award number R01 GM065368 to Amnon Kohen; the Iowa Center for Biocatalysis and Bioprocessing to Eric M. Koehn; NIH award number R01 GM61087 to Bruce A. Palfey; NIH training grant GM08270 to John A. Conrad; and The Joint Center for Structural Genomics grant U54GM074898 to Scott A. Lesley.

Portions of the research, including using an x-ray source to help reveal enzyme structure and function, were carried out at the Stanford Synchrotron Radiation Laboratory (SSRL), a national user facility operated by Stanford University on behalf of the Department of Energy, OBER. The SSRL Structural Molecular Biology Program is supported by DOE, OBER and by NIH, NCRR, Biomedical Technology Program and National Institute of General Medical Sciences.

Jennifer A. Grasswick | EurekAlert!
Further information:
http://www.nsf.gov

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>