Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover Cells Reorganize Shape to Fit the Situation

26.11.2008
Flip open any biology textbook and you're bound to see a complicated diagram of the inner workings of a cell, with its internal scaffolding, the cytoskeleton, and how it maintains a cell’s shape. Yet the fundamental question remains, which came first: the shape, or the skeleton?

Now a research team led by Phong Tran, PhD, Assistant Professor of Cell and Developmental Biology at the University of Pennsylvania School of Medicine, has the answer: Both.

The findings, published online this week in the journal Current Biology by co-senior authors Tran and Matthieu Piel of the Institut Curie, Paris, combine genetics, live-cell imaging, and microfluidics technology. They were able to force normally rod-shaped yeast cells to grow within tiny curved channels. Using the channels, they made rod-shaped cells deform into curved-shaped mutant cells and conversely, curved-shaped cells straighten out into a rod. The surprising finding: as the cells bend, they reorganize their cytoskeleton, and as they reorganize their internal skeletons, the cells further adjust their shape.

Cell shape gone awry has been implicated in some forms of cancer. In the future, one potential implication of Tran's findings is that it might be possible to rescue certain disease states via squeezing or otherwise applying mechanical pressure to tissues or organs. But that, he concedes, is “completely science fiction on my part.” Instead, he says at this point this study is pure, basic research. “It was just a cool experiment.”

The findings point to a type of feedback loop. “The cytoskeleton changes the shape of the cell and the shape of the cell also changes the organization of the cytoskeleton,” he says. “In fact they feed back on each other, so any perturbation on one system will change the other, and visa versa.”

The results validate a common belief among cell biologists, says Tran – that to cause a cell to form a branching projection, such as filopodia or dendrite, or new shape, simply adjust the cytoskeleton accordingly, and the shape will follow suit.

"Our demonstration is a conclusive and direct demonstration of that theory because we used normally rod-shaped cells, as opposed to indirect proof of the concept using mutant cell shapes,” he says.

At least five cellular components are required for making changes to the organization of the cytoskeleton and therefore the shape of a cell: microtubules, actin filaments, the cell membrane, and two protein complexes. Microtubules are hollow protein pipes that arrange themselves in bundles down the long axis of the cell. As they extend from the cell center towards the periphery, they carry with them one of the protein complexes, so that when they finally dock with a protein receptor at the cell membrane, the effect is to deliver the complex to the desired growth point. What follows is a cascade of events: This complex recruits the second protein complex, which in turn recruits the protein actin. Filaments of actin from this site bring the transport machinery necessary for new cell membrane to extend in the intended direction – generally, further along the long axis of the cell.

Essentially, what Tran's team, led by technician Courtney Terenna, found was that if normal yeast cells are forced to bend, their microtubules can no longer reach the old tip of the cell and so form new growth tips. Conversely, they also found that mutant yeast cells normally grow bent or round, if forced to grow in straight channels, will adopt cytoskeletal structures that are the normal rod-shape.

This, says Tran, could in theory partially explain why some cells from mouse knock-outs, when grown in two-dimensional tissue culture, have more severe problems than when grown in a three-dimensional animal. The researchers surmise that the three-dimensional architecture of a tissue inside a living organ rescues cytoskeletal abnormalities that otherwise arise in an artificial two-dimensional construct.

The study stems from an international collaboration between the microfluidics experts in Piel's group and the biology experts in Tran's. Co-first authors Terenna and Tatyana Makushok, a graduate student in Piel's group, funded by a Human Frontier Science Program (HFSP), an international organization funded by various countries, traveled to Paris and Philadelphia, respectively, to learn their counterpart's secrets so they could then proceed independently.

Now Tran's group is working to address several questions that arise from this research. First, how long can mutant cells maintain their wild-type phenotype once they are removed from the physical constraints of the microfluidic channel? How do the two protein complexes work together to affect cell shape? And, what effects do other environmental variables, such as temperature, have on cytoskeletal dynamics?

Tran’s lab is funded by the National Institutes of Health, the American Cancer Society, and the HFSP.

This release and related images can be found at: http://www.uphs.upenn.edu/news/News_Releases/2008/11/cytoskeleton-cell-shape.html

PENN Medicine is a $3.6 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is currently ranked #4 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to most recent data from the National Institutes of Health, received over $379 million in NIH research funds in the 2006 fiscal year. Supporting 1,700 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System (UPHS) includes its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation’s top ten “Honor Roll” hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center. In addition UPHS includes a primary-care provider network; a faculty practice plan; home care, hospice, and nursing home; three multispecialty satellite facilities; as well as the Penn Medicine at Rittenhouse campus, which offers comprehensive inpatient rehabilitation facilities and outpatient services in multiple specialties.

Karen Kreeger | Newswise Science News
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Researchers reveal new details on aged brain, Alzheimer's and dementia
21.11.2017 | Allen Institute

nachricht Nanoparticles help with malaria diagnosis – new rapid test in development
21.11.2017 | Fraunhofer-Institut für Silicatforschung ISC

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020

21.11.2017 | Physics and Astronomy

Borophene shines alone as 2-D plasmonic material

21.11.2017 | Materials Sciences

Penn study identifies new malaria parasites in wild bonobos

21.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>