Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover Cells Reorganize Shape to Fit the Situation

26.11.2008
Flip open any biology textbook and you're bound to see a complicated diagram of the inner workings of a cell, with its internal scaffolding, the cytoskeleton, and how it maintains a cell’s shape. Yet the fundamental question remains, which came first: the shape, or the skeleton?

Now a research team led by Phong Tran, PhD, Assistant Professor of Cell and Developmental Biology at the University of Pennsylvania School of Medicine, has the answer: Both.

The findings, published online this week in the journal Current Biology by co-senior authors Tran and Matthieu Piel of the Institut Curie, Paris, combine genetics, live-cell imaging, and microfluidics technology. They were able to force normally rod-shaped yeast cells to grow within tiny curved channels. Using the channels, they made rod-shaped cells deform into curved-shaped mutant cells and conversely, curved-shaped cells straighten out into a rod. The surprising finding: as the cells bend, they reorganize their cytoskeleton, and as they reorganize their internal skeletons, the cells further adjust their shape.

Cell shape gone awry has been implicated in some forms of cancer. In the future, one potential implication of Tran's findings is that it might be possible to rescue certain disease states via squeezing or otherwise applying mechanical pressure to tissues or organs. But that, he concedes, is “completely science fiction on my part.” Instead, he says at this point this study is pure, basic research. “It was just a cool experiment.”

The findings point to a type of feedback loop. “The cytoskeleton changes the shape of the cell and the shape of the cell also changes the organization of the cytoskeleton,” he says. “In fact they feed back on each other, so any perturbation on one system will change the other, and visa versa.”

The results validate a common belief among cell biologists, says Tran – that to cause a cell to form a branching projection, such as filopodia or dendrite, or new shape, simply adjust the cytoskeleton accordingly, and the shape will follow suit.

"Our demonstration is a conclusive and direct demonstration of that theory because we used normally rod-shaped cells, as opposed to indirect proof of the concept using mutant cell shapes,” he says.

At least five cellular components are required for making changes to the organization of the cytoskeleton and therefore the shape of a cell: microtubules, actin filaments, the cell membrane, and two protein complexes. Microtubules are hollow protein pipes that arrange themselves in bundles down the long axis of the cell. As they extend from the cell center towards the periphery, they carry with them one of the protein complexes, so that when they finally dock with a protein receptor at the cell membrane, the effect is to deliver the complex to the desired growth point. What follows is a cascade of events: This complex recruits the second protein complex, which in turn recruits the protein actin. Filaments of actin from this site bring the transport machinery necessary for new cell membrane to extend in the intended direction – generally, further along the long axis of the cell.

Essentially, what Tran's team, led by technician Courtney Terenna, found was that if normal yeast cells are forced to bend, their microtubules can no longer reach the old tip of the cell and so form new growth tips. Conversely, they also found that mutant yeast cells normally grow bent or round, if forced to grow in straight channels, will adopt cytoskeletal structures that are the normal rod-shape.

This, says Tran, could in theory partially explain why some cells from mouse knock-outs, when grown in two-dimensional tissue culture, have more severe problems than when grown in a three-dimensional animal. The researchers surmise that the three-dimensional architecture of a tissue inside a living organ rescues cytoskeletal abnormalities that otherwise arise in an artificial two-dimensional construct.

The study stems from an international collaboration between the microfluidics experts in Piel's group and the biology experts in Tran's. Co-first authors Terenna and Tatyana Makushok, a graduate student in Piel's group, funded by a Human Frontier Science Program (HFSP), an international organization funded by various countries, traveled to Paris and Philadelphia, respectively, to learn their counterpart's secrets so they could then proceed independently.

Now Tran's group is working to address several questions that arise from this research. First, how long can mutant cells maintain their wild-type phenotype once they are removed from the physical constraints of the microfluidic channel? How do the two protein complexes work together to affect cell shape? And, what effects do other environmental variables, such as temperature, have on cytoskeletal dynamics?

Tran’s lab is funded by the National Institutes of Health, the American Cancer Society, and the HFSP.

This release and related images can be found at: http://www.uphs.upenn.edu/news/News_Releases/2008/11/cytoskeleton-cell-shape.html

PENN Medicine is a $3.6 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is currently ranked #4 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to most recent data from the National Institutes of Health, received over $379 million in NIH research funds in the 2006 fiscal year. Supporting 1,700 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System (UPHS) includes its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation’s top ten “Honor Roll” hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center. In addition UPHS includes a primary-care provider network; a faculty practice plan; home care, hospice, and nursing home; three multispecialty satellite facilities; as well as the Penn Medicine at Rittenhouse campus, which offers comprehensive inpatient rehabilitation facilities and outpatient services in multiple specialties.

Karen Kreeger | Newswise Science News
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>