Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover cells that control inflammation in chronic disease

19.11.2009
A new type of immune cell that can be out of control in certain chronic inflammatory diseases, worsening the symptoms of conditions like psoriasis and asthma, is described for the first time this week in the Journal of Clinical Investigation.

The authors of the study, from Imperial College London, the Istituto Dermopatico dell'Immacolata in Rome and the Center of Allergy and Environment (ZAUM) in Munich, hope their discovery could lead to new treatments for these diseases that would bring the cells under control.

The new cell described in the study, called a Th22 cell, is a kind of T-helper cell. These cells are white blood cells that help to activate other immune cells when the body is infected by a pathogen, such as a virus or bacterium. They also control inflammation in the body to help fight off infection.

According to the new study, Th22 cells play a special role in overseeing and coordinating immune cells that cause inflammation. In chronic and allergic inflammatory diseases like psoriasis and allergic eczema, Th22 cells appear to be malfunctioning, leading to excessive inflammation, which can worsen symptoms.

The researchers hope that it may ultimately be possible to treat chronic skin and possibly also airway diseases by targeting Th22 cells with new drugs.

Dr Carsten Schmidt-Weber, one of the lead authors of the study from the National Heart and Lung Institute at Imperial College London, said: "We are seeing an increase in chronic diseases like skin and airway disease because of changes in people's lifestyles. These diseases can have a big impact on people's lives and patients can face a constant battle to keep their symptoms at bay. We are very excited about discovering this new subset of T-helper cells, as we believe it could provide a new target for the treatment of chronic inflammatory diseases in the future."

The researchers discovered Th22 cells by looking at skin samples from people with psoriasis, atopic eczema and allergic contact dermatitis. They analysed the samples and found a completely new type of cell. The researchers examined the molecules the cells made and found that one of them was a signalling molecule called interleukin-22 (IL-22). This signalling molecule warns tissues that inflammation or infection is going to occur, so the tissues can get ready to recognise and attack pathogens or protect themselves against inflammation. The effect of this can be either protective or detrimental - for example, IL-22 molecules and Th22 cells can cause skin cells to grow too quickly, resulting in painful, flaking skin.

The authors of the new study hope that their new discovery will provide scientists developing treatments for inflammatory disorders with a new cellular drug target. The researchers are now investigating the role of these cells in greater detail and exploring their role in disease progression. In addition, Dr Schmidt-Weber and his colleagues want to know how the cells are generated in the body and whether there is any way to control these cells before they cause unwanted damage.

Lucy Goodchild | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>