Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover cells that control inflammation in chronic disease

19.11.2009
A new type of immune cell that can be out of control in certain chronic inflammatory diseases, worsening the symptoms of conditions like psoriasis and asthma, is described for the first time this week in the Journal of Clinical Investigation.

The authors of the study, from Imperial College London, the Istituto Dermopatico dell'Immacolata in Rome and the Center of Allergy and Environment (ZAUM) in Munich, hope their discovery could lead to new treatments for these diseases that would bring the cells under control.

The new cell described in the study, called a Th22 cell, is a kind of T-helper cell. These cells are white blood cells that help to activate other immune cells when the body is infected by a pathogen, such as a virus or bacterium. They also control inflammation in the body to help fight off infection.

According to the new study, Th22 cells play a special role in overseeing and coordinating immune cells that cause inflammation. In chronic and allergic inflammatory diseases like psoriasis and allergic eczema, Th22 cells appear to be malfunctioning, leading to excessive inflammation, which can worsen symptoms.

The researchers hope that it may ultimately be possible to treat chronic skin and possibly also airway diseases by targeting Th22 cells with new drugs.

Dr Carsten Schmidt-Weber, one of the lead authors of the study from the National Heart and Lung Institute at Imperial College London, said: "We are seeing an increase in chronic diseases like skin and airway disease because of changes in people's lifestyles. These diseases can have a big impact on people's lives and patients can face a constant battle to keep their symptoms at bay. We are very excited about discovering this new subset of T-helper cells, as we believe it could provide a new target for the treatment of chronic inflammatory diseases in the future."

The researchers discovered Th22 cells by looking at skin samples from people with psoriasis, atopic eczema and allergic contact dermatitis. They analysed the samples and found a completely new type of cell. The researchers examined the molecules the cells made and found that one of them was a signalling molecule called interleukin-22 (IL-22). This signalling molecule warns tissues that inflammation or infection is going to occur, so the tissues can get ready to recognise and attack pathogens or protect themselves against inflammation. The effect of this can be either protective or detrimental - for example, IL-22 molecules and Th22 cells can cause skin cells to grow too quickly, resulting in painful, flaking skin.

The authors of the new study hope that their new discovery will provide scientists developing treatments for inflammatory disorders with a new cellular drug target. The researchers are now investigating the role of these cells in greater detail and exploring their role in disease progression. In addition, Dr Schmidt-Weber and his colleagues want to know how the cells are generated in the body and whether there is any way to control these cells before they cause unwanted damage.

Lucy Goodchild | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>