Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover cells that control inflammation in chronic disease

19.11.2009
A new type of immune cell that can be out of control in certain chronic inflammatory diseases, worsening the symptoms of conditions like psoriasis and asthma, is described for the first time this week in the Journal of Clinical Investigation.

The authors of the study, from Imperial College London, the Istituto Dermopatico dell'Immacolata in Rome and the Center of Allergy and Environment (ZAUM) in Munich, hope their discovery could lead to new treatments for these diseases that would bring the cells under control.

The new cell described in the study, called a Th22 cell, is a kind of T-helper cell. These cells are white blood cells that help to activate other immune cells when the body is infected by a pathogen, such as a virus or bacterium. They also control inflammation in the body to help fight off infection.

According to the new study, Th22 cells play a special role in overseeing and coordinating immune cells that cause inflammation. In chronic and allergic inflammatory diseases like psoriasis and allergic eczema, Th22 cells appear to be malfunctioning, leading to excessive inflammation, which can worsen symptoms.

The researchers hope that it may ultimately be possible to treat chronic skin and possibly also airway diseases by targeting Th22 cells with new drugs.

Dr Carsten Schmidt-Weber, one of the lead authors of the study from the National Heart and Lung Institute at Imperial College London, said: "We are seeing an increase in chronic diseases like skin and airway disease because of changes in people's lifestyles. These diseases can have a big impact on people's lives and patients can face a constant battle to keep their symptoms at bay. We are very excited about discovering this new subset of T-helper cells, as we believe it could provide a new target for the treatment of chronic inflammatory diseases in the future."

The researchers discovered Th22 cells by looking at skin samples from people with psoriasis, atopic eczema and allergic contact dermatitis. They analysed the samples and found a completely new type of cell. The researchers examined the molecules the cells made and found that one of them was a signalling molecule called interleukin-22 (IL-22). This signalling molecule warns tissues that inflammation or infection is going to occur, so the tissues can get ready to recognise and attack pathogens or protect themselves against inflammation. The effect of this can be either protective or detrimental - for example, IL-22 molecules and Th22 cells can cause skin cells to grow too quickly, resulting in painful, flaking skin.

The authors of the new study hope that their new discovery will provide scientists developing treatments for inflammatory disorders with a new cellular drug target. The researchers are now investigating the role of these cells in greater detail and exploring their role in disease progression. In addition, Dr Schmidt-Weber and his colleagues want to know how the cells are generated in the body and whether there is any way to control these cells before they cause unwanted damage.

Lucy Goodchild | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>