Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover cells that control inflammation in chronic disease

19.11.2009
A new type of immune cell that can be out of control in certain chronic inflammatory diseases, worsening the symptoms of conditions like psoriasis and asthma, is described for the first time this week in the Journal of Clinical Investigation.

The authors of the study, from Imperial College London, the Istituto Dermopatico dell'Immacolata in Rome and the Center of Allergy and Environment (ZAUM) in Munich, hope their discovery could lead to new treatments for these diseases that would bring the cells under control.

The new cell described in the study, called a Th22 cell, is a kind of T-helper cell. These cells are white blood cells that help to activate other immune cells when the body is infected by a pathogen, such as a virus or bacterium. They also control inflammation in the body to help fight off infection.

According to the new study, Th22 cells play a special role in overseeing and coordinating immune cells that cause inflammation. In chronic and allergic inflammatory diseases like psoriasis and allergic eczema, Th22 cells appear to be malfunctioning, leading to excessive inflammation, which can worsen symptoms.

The researchers hope that it may ultimately be possible to treat chronic skin and possibly also airway diseases by targeting Th22 cells with new drugs.

Dr Carsten Schmidt-Weber, one of the lead authors of the study from the National Heart and Lung Institute at Imperial College London, said: "We are seeing an increase in chronic diseases like skin and airway disease because of changes in people's lifestyles. These diseases can have a big impact on people's lives and patients can face a constant battle to keep their symptoms at bay. We are very excited about discovering this new subset of T-helper cells, as we believe it could provide a new target for the treatment of chronic inflammatory diseases in the future."

The researchers discovered Th22 cells by looking at skin samples from people with psoriasis, atopic eczema and allergic contact dermatitis. They analysed the samples and found a completely new type of cell. The researchers examined the molecules the cells made and found that one of them was a signalling molecule called interleukin-22 (IL-22). This signalling molecule warns tissues that inflammation or infection is going to occur, so the tissues can get ready to recognise and attack pathogens or protect themselves against inflammation. The effect of this can be either protective or detrimental - for example, IL-22 molecules and Th22 cells can cause skin cells to grow too quickly, resulting in painful, flaking skin.

The authors of the new study hope that their new discovery will provide scientists developing treatments for inflammatory disorders with a new cellular drug target. The researchers are now investigating the role of these cells in greater detail and exploring their role in disease progression. In addition, Dr Schmidt-Weber and his colleagues want to know how the cells are generated in the body and whether there is any way to control these cells before they cause unwanted damage.

Lucy Goodchild | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>